Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
Composant semi-conducteurvignette|Aperçu de quelques dispositifs semi-conducteurs encapsulés Un composant semi-conducteur est un composant électronique dont le fonctionnement repose sur les propriétés électroniques d'un matériau semi-conducteur (principalement le silicium, le germanium et l'arséniure de gallium, ainsi que des semi-conducteurs organiques). Sa conductivité se situe entre les conducteurs et les isolants. Les composants semi-conducteurs ont remplacé les tubes à vide dans la plupart des applications.
Electric field gradientIn atomic, molecular, and solid-state physics, the electric field gradient (EFG) measures the rate of change of the electric field at an atomic nucleus generated by the electronic charge distribution and the other nuclei. The EFG couples with the nuclear electric quadrupole moment of quadrupolar nuclei (those with spin quantum number greater than one-half) to generate an effect which can be measured using several spectroscopic methods, such as nuclear magnetic resonance (NMR), microwave spectroscopy, electron paramagnetic resonance (EPR, ESR), nuclear quadrupole resonance (NQR), Mössbauer spectroscopy or perturbed angular correlation (PAC).
Théorème des unités de DirichletEn théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps Q des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang où r désigne le nombre de morphismes de K dans R et r le nombre de paires de morphismes conjugués de K dans C à valeurs non toutes réelles.