Magnetization of the Fractional Quantum Hall States
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Dirac degeneracies are essential ingredients to control topological charge exchanges between bands and trigger the unique edge transport properties of topological materials. In addition, when Dirac cones are tilted, exotic phenomena can emerge such as anom ...
In recent years, topology gained a central role in physics. We learnt that energetics could be often explained better by classes of objects defined by having qualitative differences. In today's jargon, we say they are topologically distinct. The process of ...
One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electro ...
Modern condensed matter physics relies on the concept of topology to classify matter, from quantum Hall systems to topological insulators. Engineered systems, benefiting from synthetic dimensions, can potentially give access to topological states predicted ...
High-electron-mobility transistors (HEMTs) based on 2-D electron gases (2DEGs) in III-V heterostructures have superior mobility compared with the transistors of silicon-based complementary metal-oxide-semiconductor technologies. The large mobility makes th ...
Over the past 20 years, III-nitrides (GaN, AlN, InN and their alloys) have proven to be an excellent material group for electronic devices, in particular, for high electron mobility transistors (HEMTs) operating at high frequency and high power. This is ma ...
We propose a method by which the quantization of the Hall conductance can be directly measured in the transport of a one-dimensional atomic gas. Our approach builds on two main ingredients: (1) a constriction optical potential, which generates a mesoscopic ...
Two-dimensional transition metal dichalcogenides (TMDs) of Mo and W in their 1T' crystalline phase host the quantum spin Hall (QSH) insulator phase. We address the electronic properties of the QSH edge states by means of first-principles calculations perfo ...
The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral ...
Quantum spin Hall insulators make up a class of two-dimensional materials with a finite electronic band gap in the bulk and gapless helical edge states. In the presence of time-reversal symmetry, Z(2) topological order distinguishes the topological phase f ...