Coverage probabilityIn statistics, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. The fixed degree of certainty pre-specified by the analyst, referred to as the confidence level or confidence coefficient of the constructed interval, is effectively the nominal coverage probability of the procedure for constructing confidence intervals.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Loi bêta primeEn théorie des probabilités et en statistique, la loi bêta prime (également connue sous les noms loi bêta II ou loi bêta du second type) est une loi de probabilité continue définie dont le support est et dépendant de deux paramètres de forme. Si une variable aléatoire X suit une loi bêta prime, on notera . Sa densité de probabilité est donnée par : où B est la fonction bêta. Cette loi est une loi de Pearson de type VI. Le mode d'une variable aléatoire de loi bêta prime est .
Loi binomialeEn théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Fiducial inferenceFiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in favour of frequentist inference, Bayesian inference and decision theory. However, fiducial inference is important in the history of statistics since its development led to the parallel development of concepts and tools in theoretical statistics that are widely used.