Résumé
En théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon. La variable aléatoire, somme de toutes ces variables aléatoires, compte le nombre de succès et suit une loi binomiale. Il est alors possible d'obtenir la probabilité de k succès dans une répétition de n expériences : Cette formule fait intervenir le coefficient binomial duquel provient le nom de la loi. L'importance de cette loi est d'abord historique puisqu'elle a été l'objet d'étude du théorème de Moivre-Laplace, résultat du fondateur des théorèmes de convergence. Une loi binomiale peut également être utilisée pour modéliser des situations simples de succès ou échec, un jeu de pile ou face par exemple. Le calcul de sa fonction de masse devient rapidement fastidieux lorsque n est grand, il est alors possible d'utiliser des approximations par d'autres lois de probabilité telles que la loi de Poisson ou la loi normale et d'utiliser des tables de valeurs. La loi binomiale est utilisée dans divers domaines d'étude, notamment à travers des tests statistiques qui permettent d'interpréter des données et de prendre des décisions dans des situations dépendant de l'aléa. De par la simplicité de sa définition, c'est l'une des lois de probabilité étudiées dans les cours d'introduction à la théorie des probabilités. gauche|vignette|Pile ou face.|199x199px Considérons n lancers successifs d'une pièce de monnaie. Alors le nombre de fois où la pièce apparaît du côté pile suit la loi binomiale où le nombre d'expériences réalisées est n et où la probabilité de succès est . Considérons n lancers successifs d'un dé à 6 faces.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.