En théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes.
Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon. La variable aléatoire, somme de toutes ces variables aléatoires, compte le nombre de succès et suit une loi binomiale. Il est alors possible d'obtenir la probabilité de k succès dans une répétition de n expériences :
Cette formule fait intervenir le coefficient binomial duquel provient le nom de la loi.
L'importance de cette loi est d'abord historique puisqu'elle a été l'objet d'étude du théorème de Moivre-Laplace, résultat du fondateur des théorèmes de convergence. Une loi binomiale peut également être utilisée pour modéliser des situations simples de succès ou échec, un jeu de pile ou face par exemple. Le calcul de sa fonction de masse devient rapidement fastidieux lorsque n est grand, il est alors possible d'utiliser des approximations par d'autres lois de probabilité telles que la loi de Poisson ou la loi normale et d'utiliser des tables de valeurs.
La loi binomiale est utilisée dans divers domaines d'étude, notamment à travers des tests statistiques qui permettent d'interpréter des données et de prendre des décisions dans des situations dépendant de l'aléa. De par la simplicité de sa définition, c'est l'une des lois de probabilité étudiées dans les cours d'introduction à la théorie des probabilités.
gauche|vignette|Pile ou face.|199x199px
Considérons n lancers successifs d'une pièce de monnaie. Alors le nombre de fois où la pièce apparaît du côté pile suit la loi binomiale où le nombre d'expériences réalisées est n et où la probabilité de succès est .
Considérons n lancers successifs d'un dé à 6 faces.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
thumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
Amer Assoc Advancement Science2024
, , ,
Under resource constraints, LLMs are usually fine- tuned with additional knowledge using Parameter Efficient Fine-Tuning (PEFT), using Low-Rank Adaptation (LoRA) modules. In fact, LoRA injects a new set of small trainable matrices to adapt an LLM to a new ...