Publication

Optofluidic microdevice for algae classification: a comparison of results from discriminant analysis and neural network pattern recognition

Yves Bellouard
2012
Article de conférence
Résumé

The early detection of changes in the level and composition of algae is essential for tracking water quality and environmental changes. Current approaches require the collection of a specimen which is later analyzed in a laboratory: this slow and expensive approach prevents the rapid identification of changes in algae species dynamics and hinders a quick response to potential outbreaks. In a recent work, we presented a microfluidic chip for classifying and quantifying algae species in water. Here, we study the device performance and specifically compare the difference in results obtained by using a discriminant analysis classification approach and a neural network pattern recognition approach. Using both of these methods, we demonstrate the classification of algae by species, of microspheres by size, and of a detritus/cyanobacteria mixture by type. In each of the demonstrations here, the neural network outperforms the discriminant analysis method.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.