Publication

On solving LPN using BKW and variants Implementation and Analysis

Résumé

The Learning Parity with Noise problem (LPN) is appealing in cryptography as it is considered to remain hard in the post-quantum world. It is also a good candidate for lightweight devices due to its simplicity. In this paper we provide a comprehensive analysis of the existing LPN solving algorithms, both for the general case and for the sparse secret scenario. In practice, the LPN-based cryptographic constructions use as a reference the security parameters proposed by Levieil and Fouque. But, for these parameters, there remains a gap between the theoretical analysis and the practical complexities of the algorithms we consider. The new theoretical analysis in this paper provides tighter bounds on the complexity of LPN solving algorithms and narrows this gap between theory and practice. We show that for a sparse secret there is another algorithm that outperforms BKW and its variants. Following from our results, we further propose practical parameters for different security levels.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.