Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We report on the live evaluation of various news recom- mender systems conducted on the website swissinfo.ch. We demonstrate that there is a major diffierence between offine and online accuracy evaluations. In an offine setting, rec- ommending most popular stories is the best strategy, while in a live environment this strategy is the poorest. For online setting, context-tree recommender systems which profile the users in real-time improve the click-through rate by up to 35%. The visit length also increases by a factor of 2.5. Our experience holds important lessons for the evaluation of rec- ommender systems with offine data as well as for the use of the click-through rate as a performance indicator. Copyright © 2014 ACM.