Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Émotionthumb|upright=1.8|Roue des émotions de Robert Plutchik.|alt= L'émotion est une expérience psychophysiologique complexe et intense (avec un début brutal et une durée relativement brève) de l'état d'esprit d'un individu animal liée à un objet repérable lorsqu'il réagit aux influences biochimiques (internes) et environnementales (externes). Chez les humains, l'émotion inclut fondamentalement « un comportement physiologique, des comportements expressifs et une conscience ».
Opinion miningEn informatique, l'opinion mining (aussi appelé sentiment analysis) est l'analyse des sentiments à partir de sources textuelles dématérialisées sur de grandes quantités de données (big data). Ce procédé apparait au début des années 2000 et connait un succès grandissant dû à l'abondance de données provenant de réseaux sociaux, notamment celles fournies par Twitter. L'objectif de l’opinion mining est d'analyser une grande quantité de données afin d'en déduire les différents sentiments qui y sont exprimés.
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Prédiction de gènesEn bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
CommunicationLa communication est l'ensemble des interactions avec un tiers humain ou animal qui véhiculent une ou plusieurs informations. En dehors de la communication animale, on distingue chez l'être humain, la communication interpersonnelle, la communication de groupe et la communication de masse, c'est-à-dire de l'ensemble des moyens et techniques permettant la diffusion du message d'une organisation sociale auprès d'une large audience. Plusieurs disciplines emploient la notion de communication sans s'accorder sur une définition commune.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Intelligence émotionnellevignette|Les émotions sociales ont souvent lieux dans le cadre familial comme illustré sur cette image L'intelligence émotionnelle (IE) fait référence à la capacité d'une personne à percevoir, comprendre, gérer et exprimer ses propres émotions, ainsi que celles des autres, afin de résoudre les problèmes et réguler les comportements liés aux émotions. Bien que le terme soit apparu pour la première fois en 1964, il a gagné en popularité dans le best-seller L'Intelligence émotionnelle, écrit par le journaliste scientifique Daniel Goleman en 1995.