Publication

A mixed-signal computer architecture and its application to power system problems

Theodoros Kyriakidis
2015
Thèse EPFL
Résumé

Radical changes are taking place in the landscape of modern power systems. This massive shift in the way the system is designed and operated has been termed the advent of the ``smart grid''. One of its implications is a strong market pull for faster power system analysis computing. This work is concerned in particular with transient simulation, which is one of the most demanding power system analyses. This refers to the imitation of the operation of the real-world system over time, for time scales that cover the majority of slow electromechanical transient phenomena. The general mathematical formulation of the simulation problem includes a set of non-linear differential algebraic equations (DAEs). In the algebraic part of this set, heavy linear algebra computations are included, which are related to the admittance matrix of the topology. These computations are a critical factor to the overall performance of a transient simulator. This work proposes the use of analog electronic computing as a means of exceeding the performance barriers of conventional digital computers for the linear algebra operations. Analog computing is integrated in the frame of a power system transient simulator yielding significant computational performance benefits to the latter. Two hybrid, analog and digital computers are presented. The first prototype has been implemented using reconfigurable hardware. In its core, analog computing is used for linear algebra operations, while pipelined digital resources on a field programmable gate array (FPGA) handle all remaining computations. The properties of the analog hardware are thoroughly examined, with special attention to accuracy and timing. The application of the platform to the transient analysis of power system dynamics showed a speedup of two orders of magnitude against conventional software solutions. The second prototype is proposed as a future conceptual architecture that would overcome the limitations of the already implemented hardware, while retaining its virtues. The design space of this future architecture has been thoroughly explored, with the help of a software emulator. For one possible suggested implementation, speedups of four orders of magnitude against software solvers have been observed for the linear algebra operations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Algèbre linéaire
vignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Ordinateur
Un ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Reconfigurable computing
Reconfigurable computing is a computer architecture combining some of the flexibility of software with the high performance of hardware by processing with very flexible high speed computing fabrics like field-programmable gate arrays (FPGAs). The principal difference when compared to using ordinary microprocessors is the ability to make substantial changes to the datapath itself in addition to the control flow. On the other hand, the main difference from custom hardware, i.e.
Afficher plus
Publications associées (54)

Exploring High-Performance and Energy-Efficient Architectures for Edge AI-Enabled Applications

Joshua Alexander Harrison Klein

The desire and ability to place AI-enabled applications on the edge has grown significantly in recent years. However, the compute-, area-, and power-constrained nature of edge devices are stressed by the needs of the AI-enabled applications, due to a gener ...
EPFL2024

Datafication of audiovisual archives: from practice mapping to a thinking model

Yuchen Yang

Purpose Recent archiving and curatorial practices took advantage of the advancement in digital technologies, creating immersive and interactive experiences to emphasize the plurality of memory materials, encourage personalized sense-making and extract, man ...
Leeds2024

2D Nanosystems: Applications of 2D Semiconductors for In-Memory Computing

Guilherme Migliato Marega

Machine learning and data processing algorithms have been thriving in finding ways of processing and classifying information by exploiting the hidden trends of large datasets. Although these emerging computational methods have become successful in today's ...
EPFL2023
Afficher plus
MOOCs associés (32)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.