Fixed-wing Micro Aerial Vehicle for Accurate Corridor Mapping
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The success of drone missions is incumbent on an accurate determination of the drone pose and velocity, which are collectively estimated by fusing inertial measurement unit and global navigation satellite system (GNSS) measurements. However, during a GNSS ...
Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global N ...
The dominant navigation system for small civilian UAVs today is based on integration of inertial navigation system (INS) and global navigation satellite system (GNSS). This strategy works well to navigate the UAV, as long as proper reception of GNSS signal ...
The Vehicle Dynamic Model (VDM) based navigation of fixed-wing drones determines the airborne trajectory in conjunction with Inertial Measurement Unit (IMU) sensors. Without Global Navigation Satellite Systems (GNSS) signals, this method estimates navigati ...
Drone mapping with GNSS-assisted photogrammetry is a highly efficient method for surveying small -or medium- sized areas. However, the mapping quality is not intuitively predictable, particularly in complex environments (with steep and cluttered terrain), ...
Autonomous navigation of small UAVs is typically based on the integration of inertial navigation systems (INS) together with global navigation satellite systems (GNSS). However, GNSS signals can face various forms of interference affecting their continuous ...
The success of drone missions is incumbent on an accurate determination of the drone pose and velocity, which are collectively estimated by fusing iner- tial measurement unit and global navigation satellite system (GNSS) mea- surements. However, during a G ...
One of the main challenges in underwater robot localization is the scarcity of external positioning references. Therefore, accurate inertial localization in between external position updates is crucial for applications such as underwater environmental samp ...
This paper presents extensions and practical realization of a previously proposed novel approach to navigation and sensor integration for small unmanned aerial vehicles (UAV). The proposed approach employs vehicle dynamic model (VDM) as process model withi ...
The use of a Bayesian filter (e.g., Kalman filter) for the fusion of information from satellite positioning and inertial navigation is a common approach in many applications, where the knowledge of position, velocity, and attitude in space are of great int ...