Longueur de cléEn cryptologie, la longueur de clé ( ou key length) est la taille mesurée en bits de la clé de chiffrement (ou de signature) utilisée par un algorithme de chiffrement. La longueur de la clé est différente de la sécurité cryptographique, qui est la mesure de l'attaque la plus rapide contre un algorithme, aussi mesurée en bits. La sécurité évaluée d'un cryptosystème ne peut pas dépasser sa longueur de clé (étant donné que tout algorithme peut être cassé par force brute), mais elle peut être plus petite.
Key managementKey management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher.
Fisher's methodIn statistics, Fisher's method, also known as Fisher's combined probability test, is a technique for data fusion or "meta-analysis" (analysis of analyses). It was developed by and named for Ronald Fisher. In its basic form, it is used to combine the results from several independence tests bearing upon the same overall hypothesis (H0). Fisher's method combines extreme value probabilities from each test, commonly known as "p-values", into one test statistic (X2) using the formula where pi is the p-value for the ith hypothesis test.
Type I and type II errorsIn statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the failure to reject a null hypothesis that is actually false (also known as a "false negative" finding or conclusion; example: "a guilty person is not convicted").
Détection de rupturesvignette|350px|droite|Exemple de signal ayant des changements dans la moyenne. vignette|350px|droite|Exemple de signal ayant des changements dans la distribution. En analyse statistique, le problème de détection de ruptures (ou détection de points de changement) est un problème de régression ayant pour but d'estimer les instants où un signal présente des changements dans la distribution. Ces instants sont matérialisés sur les deux figures par des lignes verticales bleues.