Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We extend Schoenberg's B-splines to all fractional degrees α > -1/2. These splines are constructed using linear combinations of the integer shifts of the power functions (one-sided) or (symmetric); in each case, they are α-Hölder continuous for α > 0. They satisfy most of the properties of the traditional B-splines; in particular, the Riesz basis condition and the two-scale relation, which makes them suitable for the construction of new families of wavelet bases. What is especially interesting from a wavelet perspective is that the fractional B-splines have a fractional order of approximation (α+1), while they reproduce the polynomials of degree [α]. We show how they yield continuous-order generalizations of the orthogonal Battle-Lemarié wavelets and of the semi-orthogonal B-spline wavelets. As α increases, these latter wavelets tend to be optimally localized in time and frequency in the sense specified by the uncertainty principle. The corresponding analysis wavelets also behave like fractional differentiators; they may therefore be used to whiten fractional Brownian motion processes.
Michaël Unser, John Paul Ward, Ildar Khalidov
Michaël Unser, John Paul Ward, Kunal Narayan Chaudhury