Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
EvaluationIn common usage, evaluation is a systematic determination and assessment of a subject's merit, worth and significance, using criteria governed by a set of standards. It can assist an organization, program, design, project or any other intervention or initiative to assess any aim, realisable concept/proposal, or any alternative, to help in decision-making; or to ascertain the degree of achievement or value in regard to the aim and objectives and results of any such action that has been completed.
Impact evaluationImpact evaluation assesses the changes that can be attributed to a particular intervention, such as a project, program or policy, both the intended ones, as well as ideally the unintended ones. In contrast to outcome monitoring, which examines whether targets have been achieved, impact evaluation is structured to answer the question: how would outcomes such as participants' well-being have changed if the intervention had not been undertaken? This involves counterfactual analysis, that is, "a comparison between what actually happened and what would have happened in the absence of the intervention.
Loss functions for classificationIn machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given as the space of all possible inputs (usually ), and as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function which best predicts a label for a given input .
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Accélération de suiteEn mathématiques, laccélération de suite est une méthode de transformation de suites ou de série numérique visant à améliorer la vitesse de convergence d'une série. Des techniques d'accélération sont souvent utilisées en analyse numérique, afin d'améliorer la rapidité de méthodes d'intégration numérique ou obtenir des identités sur des fonctions spéciales. Par exemple, la transformation d'Euler appliquée à la série hypergéométrique permet de retrouver plusieurs identités connues.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Règle de d'Alembertvignette|Jean Le Rond d'Alembert, mathématicien français. La règle de d'Alembert (ou critère de d'Alembert), doit son nom au mathématicien français Jean le Rond d'Alembert. C'est un test de convergence pour une série à termes positifs. Dans certains cas, elle permet d'établir la convergence absolue d'une série à termes complexes ou vectoriels, ou au contraire sa divergence. Soit (u) une suite de réels strictement positifs. On note et les limites inférieure et supérieure des quotients successifs : Si , alors la série de terme général u converge.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.