MMSE Denoising of Sparse Lévy Processes via Message Passing
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we consider model combination methods for adaptive filtering that perform unbiased estimation. In this widely studied framework, two adaptive filters are run in parallel, each producing unbiased estimates of an underlying linear model. The o ...
The number of vehicles that are included in a metered motorway ramp or an urban signalized link at any time is valuable information for real-time control. A recently developed Kalman-filter-based real-time estimator for the vehicle count within signalized ...
Institute of Electrical and Electronics Engineers2010
Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...
We study the distributed sampling and centralized reconstruction of two correlated signals, modeled as the input and output of an unknown sparse filtering operation. This is akin to a Slepian-Wolf setup, but in the sampling rather than the lossless compres ...
The field of Compressed Sensing has shown that a relatively small number of random projections provide sufficient information to accurately reconstruct sparse signals. Inspired by applications in sensor networks in which each sensor is likely to observe a ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2007
In this paper we aim to explore what is the most appropriate number of data samples needed when measuring the temporal correspondence between a chosen set of video and audio cues in a given audio-visual sequence. Presently the optimal model that connects s ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
Conventional sampling (Shannon's sampling formulation and its approximation-theoretic counterparts) and interpolation theories provide effective solutions to the problem of reconstructing a signal from its samples, but they are primarily restricted to the ...