Publication

Impact of Sample Sizes on Information Theoretic Measures for Audio-Visual Signal Processing

Résumé

In this paper we aim to explore what is the most appropriate number of data samples needed when measuring the temporal correspondence between a chosen set of video and audio cues in a given audio-visual sequence. Presently the optimal model that connects statistics of audio and video signals does not exist since one does not know the most appropriate features to be extracted in order to analyze their correlation. Previous approaches assumed simple parametric and non-parametric models for the joint distribution for capturing the complex signal relationships. The main problem in using the standard information theoretic quantities, such as entropy and mutual information, is the accurate estimation of the probability density function from a limited number of data. The main idea is to project the data into a statistically sufficient low-dimensional subspace, suitable for density estimation. Then using a simple parametric model based on assumption of Gaussianity, mutual information is estimated and applied as a measure of correspondence. We exploit how the choice of sample size affects the reliability of the correspondence measure (mutual information) between selected features of the two modalities, audio and video.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Information mutuelle
Dans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Théorie de l'information
La théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Entropie de Shannon
En théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Afficher plus
Publications associées (140)

Higher Order Asymptotics: Applications to Satellite Conjunction and Boundary Problems

Soumaya Elkantassi

Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
EPFL2023

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Fabio Nobile, Yoshihito Kazashi

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined b ...
SIAM PUBLICATIONS2023

Detecting whether a stochastic process is finitely expressed in a basis

Victor Panaretos, Neda Mohammadi Jouzdani

Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023
Afficher plus
MOOCs associés (16)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.