**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Fast Robust PCA on Graphs

Vasilis Kalofolias, Nathanaël Perraudin, Gilles Puy, Nauman Shahid, Pierre Vandergheynst

*Ieee-Inst Electrical Electronics Engineers Inc, *2016

Article

Article

Résumé

Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the curse of dimensionality. However, often such methods are accompanied with three different problems: high computational complexity (usually associated with the nuclear norm minimization), non-convexity (for matrix factorization methods) and susceptibility to gross corruptions in the data. In this paper we propose a principal component analysis (PCA) based solution that overcomes these three issues and approximates a low-rank recovery method for high dimensional datasets. We target the low-rank recovery by enforcing two types of graph smoothness assumptions, one on the data samples and the other on the features by designing a convex optimization problem. The resulting algorithm is fast, efficient and scalable for huge datasets with $\mathcal{O}(n \log(n))$ computational complexity in the number of data samples. It is also robust to gross corruptions in the dataset as well as to the model parameters. Clustering experiments on 7 benchmark datasets with different types of corruptions and background separation experiments on 3 video datasets show that our proposed model outperforms 10 state-of-the-art dimensionality reduction models.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (21)

Publications associées (32)

Analyse en composantes principales

L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotel

Donnée

Une donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une descr

Parameter

A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element

Chargement

Chargement

Chargement

Over the past few decades we have been experiencing a data explosion; massive amounts of data are increasingly collected and multimedia databases, such as YouTube and Flickr, are rapidly expanding. At the same time rapid technological advancements in mobile devices and vision sensors have led to the emergence of novel multimedia mining architectures. These produce even more multimedia data, which are possibly captured under geometric transformations and need to be efficiently stored and analyzed. It is also common in such systems that data are collected distributively. This very fact poses great challenges in the design of effective methods for analysis and knowledge discovery from multimedia data. In this thesis, we study various instances of the problem of classification of visual data under the viewpoint of modern challenges. Roughly speaking, classification corresponds to the problem of categorizing an observed object to a particular class (or category), based on previously seen examples. We address important issues related to classification, namely flexible data representation for joint coding and classification, robust classification in the case of large geometric transformations and classification with multiple object observations in both centralized and distributed settings. We start by identifying the need for flexible data representation methods that are efficient in both storage and classification of multimedia data. Such flexible schemes offer the potential to significantly impact the efficiency of current multimedia mining systems, as they permit the classification of multimedia patterns directly in their compressed form, without the need for decompression. We propose a framework, called semantic approximation, which is based on sparse data representations. It formulates dimensionality reduction as a matrix factorization problem, under hybrid criteria that are posed as a trade-off between approximation for efficient compression and discrimination for effective classification. We demonstrate that the proposed methodology competes with state-of-the-art solutions in image classification and face recognition, implying that compression and classification can be performed jointly without performance penalties with respect to expensive disjoint solutions. Next, we allow the multimedia patterns to be geometrically transformed and we focus on transformation invariance issues in pattern classification. When a pattern is transformed, it spans a manifold in a high dimensional space. We focus on the problem of computing the distance of a certain test pattern from the manifold, which is also closely related to the image alignment problem. This is a hard non-convex problem that has only been sub-optimally addressed before. We represent transformation manifolds based on sparse geometric expansions, which results in a closed-form representation of the manifold equation with respect to the transformation parameters. When the transformation consists of a synthesis of translations, rotations and scalings, we prove that the objective function of this problem can be decomposed as a difference of convex functions (DC). This very property allows us to solve optimally our optimization problem with a cutting plane algorithm, which is well known to successfully find the global minimizer in practice. We showcase applications in robust face recognition and image alignment. The classification problem with multiple observations is addressed next. Multiple observations are typically produced in practice when an object is observed over successive time instants or under different viewpoints. In particular, we focus on the problem of classifying an object when multiple geometrically transformed observations of it are available. These multiple observations typically belong to a manifold and the classification problem resides in determining which manifold the observations belong to. We show that this problem can be viewed as a special case of semi-supervised learning, where all unlabelled examples belong to the same class. We design a graph-based algorithm, which exploits the structure of the manifold. Estimating the unknown object class then results into a discrete optimization problem that can be solved efficiently. We show the performance of our algorithm in classification of multiple handwritten digit images and in video-based face recognition. Next, we study the problem of classification of multiple observations in distributed scenarios, such as camera networks. In this case the classification is performed iteratively and distributively, without the presence of a central coordinator node. The main goal is to reach a global classification decision using only local computation and communication, white ensuring robustness to changes in network topology. We propose to use consensus algorithms in order to design a distributed version of the aforementioned graph-based algorithm. We show that the distributed classification algorithm has similar performance as its centralized counterpart, provided that the training set is sufficiently large. Finally, we delve further into the convergence properties of consensus-based distributed algorithms and we propose an acceleration methodology for fast convergence that uses the memory of the sensors. Our simulations show that the convergence is indeed accelerated in both static and dynamic networks, and that distributed classification in sensor networks can significantly benefit from them. Overall, the present thesis addresses a few important issues related to pattern analysis and classification in modern multimedia systems. Our solutions for semantic approximation and transformation invariance can impact the efficiency and robustness of classification in multimedia systems. Furthermore, our graph-based framework for multiple observations is able to perform effective classification in both centralized and distributed environments. Finally, our fast consensus algorithms can significantly contribute to the accelerated convergence of distributed classification algorithms in sensor networks.

In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time series, matrices or high dimensional tensors. The goal of the data mining community is to reveal the hidden linear or non-linear structures in the datasets. Over the past couple of decades matrix factorization, owing to its intrinsic association with dimensionality reduction has been adopted as one of the key methods in this context. One can either use a single linear subspace to approximate the data (the standard Principal Component Analysis (PCA) approach) or a union of low dimensional subspaces where each data class belongs to a different subspace. In many cases, however, the low dimensional data follows some additional structure. Knowledge of such structure is beneficial, as we can use it to enhance the representativity of our models by adding structured priors. A nowadays standard way to represent pairwise affinity between objects is by using graphs. The introduction of graph-based priors to enhance matrix factorization models has recently brought them back to the highest attention of the data mining community. Representation of a signal on a graph is well motivated by the emerging field of signal processing on graphs, based on notions of spectral graph theory. The underlying assumption is that high-dimensional data samples lie on or close to a smooth low-dimensional manifold. Interestingly, the underlying manifold can be represented by its discrete proxy, i.e. a graph. A primary limitation of the state-of-the-art low-rank approximation methods is that they do not generalize for the case of non-linear low-rank structures. Furthermore, the standard low-rank extraction methods for many applications, such as low-rank and sparse decomposition, are computationally cumbersome. We argue, that for many machine learning and signal processing applications involving big data, an approximate low-rank recovery suffices. Thus, in this thesis, we present solutions to the above two limitations by presenting a new framework for scalable but approximate low-rank extraction which exploits the hidden structure in the data using the notion of graphs. First, we present a novel signal model, called

`Multilinear low-rank tensors on graphs (MLRTG)' which states that a tensor can be encoded as a multilinear combination of the low-frequency graph eigenvectors, where the graphs are constructed along the various modes of the tensor. Since the graph eigenvectors have the interpretation of \textit{non-linear} embedding of a dataset on the low-dimensional manifold, we propose a method called `

Graph Multilinear SVD (GMLSVD)' to recover PCA based linear subspaces from these eigenvectors. Finally, we propose a plethora of highly scalable matrix and tensor based problems for low-rank extraction which implicitly or explicitly make use of the GMLSVD framework. The core idea is to replace the expensive iterative SVD operations by updating the linear subspaces from the fixed non-linear ones via low-cost operations. We present applications in low-rank and sparse decomposition and clustering of the low-rank features to evaluate all the proposed methods. Our theoretical analysis shows that the approximation error of the proposed framework depends on the spectral properties of the graph LaplaciansXavier Bresson, Michael Bronstein, Vasilis Kalofolias, Nauman Shahid, Pierre Vandergheynst

Principal Component Analysis (PCA) is the most widely used tool for linear dimensionality reduction and clustering. Still it is highly sensitive to outliers and does not scale well with respect to the number of data samples. Robust PCA solves the first issue with a sparse penalty term. The second issue can be handled with the matrix factorization model, which is however non-convex. Besides, PCA based clustering can also be enhanced by using a graph of data similarity. In this article, we introduce a new model called "Robust PCA on Graphs" which incorporates spectral graph regularization into the Robust PCA framework. Our proposed model benefits from 1) the robustness of principal components to occlusions and missing values, 2) enhanced low-rank recovery, 3) improved clustering property due to the graph smoothness assumption on the low-rank matrix, and 4) convexity of the resulting optimization problem. Extensive experiments on 8 benchmark, 3 video and 2 artificial datasets with corruptions clearly reveal that our model outperforms 10 other state-of-the-art models in its clustering and low-rank recovery tasks.

2015