Publication

Feynman-Kac representation for the parabolic Anderson model driven by fractional noise

Kamran Kalbasi
2015
Article
Résumé

We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant, Delta is the discrete Laplacian defined by Delta f (x) = 1/2d Sigma vertical bar y-x vertical bar=1 (f(Y) - f (0)), and {W(t,x) ; t > 0} x is an element of Z(d) is a family of independent fractional Brownian motions with Hurst parameter H is an element of (0,1), indexed by Z(d). We make sense of this equation via a Stratonovich integration obtained by approximating the fractional Brownian motions with a family of Gaussian processes possessing absolutely continuous sample paths. We prove that the Feynman-Kac representation u(t, x) = E-infinity [u(0) (X(t)) exp integral(t)(0) W(ds,X(t-s))], (1) is a mild solution to this problem. Here u(0) (y) is the initial value at site y is an element of Z(d), {X(t); t >= 0} is a simple random walk with jump rate f, started at x E Zd and independent of the family {W(t, x) ; t >= 0}(x is an element of Zd) and E-infinity is expectation withrespect to this random walk. We give a unified argument that works for any Hurst parameter H is an element of (0,1). (C) 2015 Elsevier Inc. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.