Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant, Delta is the discrete Laplacian defined by Delta f (x) = 1/2d Sigma vertical bar y-x vertical bar=1 (f(Y) - f (0)), and {W(t,x) ; t > 0} x is an element of Z(d) is a family of independent fractional Brownian motions with Hurst parameter H is an element of (0,1), indexed by Z(d). We make sense of this equation via a Stratonovich integration obtained by approximating the fractional Brownian motions with a family of Gaussian processes possessing absolutely continuous sample paths. We prove that the Feynman-Kac representation u(t, x) = E-infinity [u(0) (X(t)) exp integral(t)(0) W(ds,X(t-s))], (1) is a mild solution to this problem. Here u(0) (y) is the initial value at site y is an element of Z(d), {X(t); t >= 0} is a simple random walk with jump rate f, started at x E Zd and independent of the family {W(t, x) ; t >= 0}(x is an element of Zd) and E-infinity is expectation withrespect to this random walk. We give a unified argument that works for any Hurst parameter H is an element of (0,1). (C) 2015 Elsevier Inc. All rights reserved.
,
,