Microscope électronique en transmission à balayagevignette|Exemple de Microscope électronique en transmission à balayage VG501 Un microscope électronique en transmission à balayage (METB ou en anglais STEM pour scanning transmission electron microscope) est un type de microscope électronique dont le principe de fonctionnement allie certains aspects du microscope électronique à balayage et du microscope électronique en transmission. Une source d'électrons focalise un faisceau d'électrons qui traverse l'échantillon.
Diffraction d’électrons lentsLa diffraction d'électrons lents (low-energy electron diffraction, LEED) est une technique de détermination de la structure cristalline d'une surface par bombardement à l'aide d'un faisceau monochromatique et collimaté d'électrons lents (20-200 eV) dont on observe la figure de diffraction sur un écran fluorescent. Le LEED peut être utilisé de deux façons : Qualitativement : la figure de diffraction est observée sur l'écran et la position des spots donne des informations sur la symétrie de la structure atomique en surface.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
JelliumJellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges (i.e. atomic nuclei) are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions (due to like charge) without explicit introduction of the atomic lattice and structure making up a real material.
Effet photoélectriquealt=|vignette|Un schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (particules rouges) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ondulations bleues). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau sous l'action de la lumière. Par extension, il regroupe l'ensemble des phénomènes électriques dans un matériau sous l'effet de la lumière.
Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
Structure hyperfinevignette|Représentation schématique des niveaux fins et hyperfins de l’hydrogène. La structure hyperfine d’un niveau d’énergie dans un atome consiste en une séparation de ce niveau en états d’énergie très proches. Il s’observe essentiellement par une raie spectrale dans le domaine radio ou micro-onde, comme la raie à 21 centimètres de l’hydrogène atomique. La structure hyperfine s’explique en physique quantique comme une interaction entre deux dipôles magnétiques : Le dipôle magnétique nucléaire résultant du spin nucléaire ; Le dipôle magnétique électronique lié au moment cinétique orbital et au spin de l’électron.