In this work, a new embodiment of flexible perovskite solar cell is based on graphene (Gr) as the barrier layer and the atmospheric plasma jet (APjet)-treated ZnO quantum dots (QDs) as the mesoscopic metal oxide layer on ITO-PET substrates. The ITO-PET flexible substrate was treated with oxygen (O-2) plasma before creating an efficient barrier layer of Gr, and thereafter as-synthesized ZnO QDs were deposited by spin coating on ITO-PET/Gr thin film. ITO-PET/Gr/ZnO-QDs thin film substrates were finally subjected to APjet treatment using RF power of similar to 40 W with frequency of similar to 13.56 MHz, which substantially improved the interfacial properties of the deposited layers. The fabricated ITO-PET/Gr/ZnO-QDs(APjet)/CH3NH3PbI3/spiro-MeOTAD/Ag flexible perovskite solar cell obtained the high conversion efficiency of similar to 9.73% along with high short circuit current (J(SC)) of similar to 16.8 mA/cm(2), open circuit voltage (V-OC) of similar to 0.935 V, and high fill factor (FF) of similar to 0.62. The APjet treatment on ITO-PET/Gr/ZnO QDs thin film enhanced the performances and the photocurrent density as compared to other solar cells fabricated without APjet treated ITO-PET/Gr/ZnO QDs thin film. By analyzing the intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS), the fabricated flexible perovskite solar cell exhibited a good charge transfer rate and a reduction in the recombination rate. The APjet treatment and the introduction of low-cost Gr barrier layer are promising prospects to approach low cost photovoltaic devices.
Jacques-Edouard Moser, Andrea Cannizzo, Etienne Christophe Socie, Camila Bacellar Cases Da Silveira, Victoria Kabanova
Mohammad Khaja Nazeeruddin, Yi Zhang
Christophe Ballif, Quentin Thomas Jeangros, Alessandro Francesco Aldo Virtuani, Olatz Arriaga Arruti, Luca Gnocchi