Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Noms des grands nombresLes noms des grands nombres sont des systèmes de dérivation lexicale qui permettent de nommer des nombres au-delà du langage courant. Dans les langues occidentales modernes, les grands nombres sont généralement nommés d'après l'un ou l'autre des deux systèmes incompatibles suivants : les échelles longue et courte. Ces deux systèmes définissent différemment les mots « billion », « trillion », « quadrillion » L'échelle longue définit aussi les noms « billiard », « trilliard », « quadrilliard » L'usage a souvent varié, même dans un pays donné, suivant les époques.
Méthodologie historiqueDans l'épistémologie et en histoire, la méthodologie historique désigne l’ensemble des réflexions qui portent sur les procédés, les moyens, les règles suivies et les contextes des travaux des historiens. Elle tend à expliquer comment les historiens produisent des interprétations historiques, définissent des méthodes considérées déontologiques ou tout au moins valides. La méthodologie historique cherche notamment à établir les causes des évènements historiques, ainsi que leurs conséquences.