Rate equationIn chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Plan d'expériencesOn nomme plan d'expériences (en anglais, design of experiments ou DOE) la suite ordonnée d'essais d'une expérimentation, chacun permettant d'acquérir de nouvelles connaissances en maîtrisant un ou plusieurs paramètres d'entrée pour obtenir des résultats validant un modèle avec une bonne économie de moyens (nombre d'essais le plus faible possible, par exemple). Un exemple classique est le « plan en étoile » où en partant d'un jeu de valeurs choisi pour les paramètres d'un essai central, on complète celui-ci par des essais où chaque fois un seul des facteurs varie « toutes choses égales par ailleurs ».
Identification (statistiques)En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. On considère le modèle statistique : avec : l'espace de réalisation des variables aléatoires l'espace des valeurs possibles pour le paramètre une loi de probabilité de densité On définit alors la fonction de vraisemblance comme : On dit
BiofiltreUn biofiltre est un moyen utilisé pour le traitement des eaux polluées (biofiltration), ou de polluants gazeux en solution dans l'eau. Il constitue une autre technique d’épuration biologique à cultures fixées. Cette méthode est le plus souvent utilisée pour le traitement des eaux urbaines. Un biofiltre peut être un dispositif d'épuration de l'air intérieur utilisant des plantes en pots (voir par exemple le programme Phyt'air) ou un mur végétalisé.
Identification de systèmeL'identification de système ou identification paramétrique est une technique de l'automatique consistant à obtenir un modèle mathématique d'un système à partir de mesures. L'identification consiste à appliquer ou observer des signaux de perturbation à l'entrée d'un système (par exemple, pour un système électronique, ceux-ci peuvent être de type binaire aléatoire ou pseudo-aléatoire, galois, sinus à fréquences multiples...) et en analyser la sortie dans le but d'obtenir un modèle purement mathématique.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Stochastic optimizationStochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization.