Ressources et consommation énergétiques mondialesLes réserves mondiales prouvées d'énergie fossile pouvaient être estimées en 2020, selon l'Agence fédérale allemande pour les sciences de la Terre et les matières premières, à , dont 55 % de charbon, 25 % de pétrole et 19 % de gaz naturel. Ces réserves assurent de production au rythme actuel ; cette durée est très variable selon le type d'énergie : pour le pétrole, pour le gaz naturel, pour le charbon. Pour l'uranium, avec les techniques actuelles, elle serait de 90 à selon les estimations, et sa durée d'utilisation pourrait se compter en siècles en ayant recours à la surgénération.
Pic pétrolierthumb|upright=1.6|Courbes cumulées de production de pétrole (graphique de 2005). À cette époque, le pic pétrolier était attendu pour l'année 2006, année où le pétrole conventionnel a effectivement atteint son pic. Toutefois, l'essor du pétrole de schiste américain dans les années 2010 a repoussé les perspectives du pic pétrolier mondial vers 2025.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
Centrale électriqueUne centrale électrique est un site industriel destiné à la production d'électricité. Les centrales électriques alimentent en électricité, au moyen du réseau électrique, les consommateurs, particuliers ou industriels éloignés de la centrale. La production d'électricité y est assurée par la conversion en énergie électrique d'une énergie primaire qui peut être soit mécanique (force du vent, force de l'eau des rivières, des marées...), soit chimique (réactions d'oxydoréduction avec des combustibles, fossiles ou non, tels que la biomasse), soit nucléaire, soit solaire.
Fonction exponentielle doubleUne fonction exponentielle double est une fonction exponentielle dont l’exposant est lui-même une fonction exponentielle. La forme générale est : Cette fonction croît plus vite qu’une exponentielle simple. Par exemple, pour a = b = 10 : f(−1) ≈ ; f(0) = 10 ; f(1) = 1010 ; f(2) = 10100 = googol ; f(3) = 101000 ; f(100) = 1010100 = googolplex. Les factorielles croissent plus vite que les exponentielles, mais beaucoup plus lentement que les exponentielles doubles. La fonction hyper-exponentielle et la fonction d'Ackermann croissent encore plus vite.
Peak coalPeak coal is the peak consumption or production of coal by a human community. Global coal consumption peaked in 2013, and had dropped slightly by the end of the 2010s. The peak of coal's share in the global energy mix was in 2008, when coal accounted for 30% of global energy production. The decline in coal use is largely driven by consumption declines in the United States and Europe, as well as developed economies in Asia. In 2019, production increases in countries such as China, Indonesia, India, Russia and Australia compensated for the falls in the United States and Europe.
DemandIn economics, demand is the quantity of a good that consumers are willing and able to purchase at various prices during a given time. The relationship between price and quantity demand is also called the demand curve. Demand for a specific item is a function of an item's perceived necessity, price, perceived quality, convenience, available alternatives, purchasers' disposable income and tastes, and many other options. Innumerable factors and circumstances affect a consumer's willingness or to buy a good.