Fonction homogènevignette|Exemple de fonction homogène de degré 1 En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance. Soient E et F deux espaces vectoriels sur un même corps commutatif K.
Relation de dispersionEn physique théorique, une relation de dispersion est une relation entre la pulsation et le vecteur d'onde d'une onde monochromatique. Par extension, la dualité onde-corpuscule de la physique quantique conduit à l'introduction de relation de dispersion pour une particule, comme relation entre son énergie et sa quantité de mouvement . Un milieu non dispersif est caractérisé par un indice indépendant de la pulsation. La relation de dispersion s'écritavec le vecteur d'onde.
Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Propriété de la borne supérieureEn mathématiques, un ensemble ordonné est dit posséder la propriété de la borne supérieure si tous ses sous-ensembles non vides et majorés possèdent une borne supérieure. De même, un ensemble ordonné possède la propriété de la borne inférieure si tous ses sous-ensembles non vides et minorés possèdent une borne inférieure. Il s'avère que ces deux propriétés sont équivalentes. On dit aussi parfois qu'un ensemble possédant la propriété de la borne supérieure est Dedekind complet. Soit un ensemble ordonné (partiellement ou totalement).
Index of dispersionIn probability theory and statistics, the index of dispersion, dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical model.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Modélisation de la dispersion atmosphériqueLa modélisation de la dispersion atmosphérique est une simulation de la dispersion de panaches de pollution dans un contexte et une temporalité donnée, faite à l'aide d'outils mathématiques et de logiciels informatiques et cartographiques. Les modèles cherchent à prendre en compte les conséquences directes et indirectes, dans l'espace et dans le temps des rejets (accidentels ou non) de substances (gaz, particules, aérosols, radionucléides...) indésirables, dangereuses ou toxiques.
Partie bornéeEn mathématiques, la notion de partie bornée (ou, par raccourci, de borné) étend celle d'intervalle borné de réels à d'autres structures, notamment en topologie et en théorie des ordres. Selon les cas, la définition privilégie l'existence de bornes ponctuelles ou la négation de l'éloignement à l'infini. Une fonction bornée est une fonction dont l' est bornée dans l'ensemble d'arrivée. Un opérateur borné est un opérateur linéaire dont les images de bornés sont bornées également.
Roadway air dispersion modelingRoadway air dispersion modeling is the study of air pollutant transport from a roadway or other linear emitter. Computer models are required to conduct this analysis, because of the complex variables involved, including vehicle emissions, vehicle speed, meteorology, and terrain geometry. Line source dispersion has been studied since at least the 1960s, when the regulatory framework in the United States began requiring quantitative analysis of the air pollution consequences of major roadway and airport projects.