Arbre enracinéEn théorie des graphes, un arbre enraciné ou une arborescence est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent. En informatique, c'est également une structure de données récursive utilisée pour représenter ce type de graphes. Dans un arbre, on distingue deux catégories d'éléments : les feuilles (ou nœuds externes), éléments ne possédant pas de fils dans l'arbre ; les nœuds internes, éléments possédant des fils (sous-branches).
Arborescencethumb|Exemple de représentation arborescente En mathématiques, plus précisément dans la théorie des graphes : une arborescence est un arbre comportant un sommet particulier , nommé racine de l'arborescence, à partir duquel il existe un chemin unique vers tous les autres sommets. En informatique, cette notion désigne souvent celle d'arbre de la théorie des graphes. Une arborescence désigne alors généralement une organisation des données en mémoire, de manière logique et hiérarchisée, utilisant une structure algorithmique d'arbre.
R-arbreLes R-arbres sont des structures de données sous forme d'arbre utilisées comme méthodes d'exploration spatiale. Elles servent à indexer des informations multidimensionnelles (coordonnées géographiques, rectangles ou polygones). Inventés par Antonin Guttman en 1984, les R-arbres sont utilisés aussi bien dans des contextes théoriques qu'appliqués. Un cas d'utilisation typique des R-arbres est le stockage d'informations géographiques : par exemple l'emplacement des restaurants dans une ville, ou les polygones constitutifs des dessins d'une carte (routes, bâtiments, côtes, etc.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
Structure de données persistanteEn informatique, une structure de données persistante est une structure de données qui préserve ses versions antérieures lorsqu'elle est modifiée ; une telle structure est immuable, car ses opérations ne la modifient pas en place (de manière visible) mais renvoient au contraire de nouvelles structures. Une structure est partiellement persistante si seule sa version la plus récente peut être modifiée, les autres n'étant accessibles qu'en lecture. La structure est dite totalement persistante si chacune de ses versions peut être lue ou modifiée.
Arbre binaireEn informatique, un arbre binaire est une structure de données qui peut se représenter sous la forme d'une hiérarchie dont chaque élément est appelé nœud, le nœud initial étant appelé racine. Dans un arbre binaire, chaque élément possède au plus deux éléments fils au niveau inférieur, habituellement appelés gauche et droit. Du point de vue de ces éléments fils, l'élément dont ils sont issus au niveau supérieur est appelé père. Au niveau le plus élevé, niveau 0, il y a un nœud racine.
B+ treeA B+ tree is an m-ary tree with a variable but often large number of children per node. A B+ tree consists of a root, internal nodes and leaves. The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves. The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage context — in particular, .
M-ary treeIn graph theory, an m-ary tree (for nonnegative integers m) (also known as n-ary, k-ary or k-way tree) is an arborescence (or, for some authors, an ordered tree) in which each node has no more than m children. A binary tree is the special case where m = 2, and a ternary tree is another case with m = 3 that limits its children to three. A full m-ary tree is an m-ary tree where within each level every node has 0 or m children. A complete m-ary tree (or, less commonly, a perfect m-ary tree) is a full m-ary tree in which all leaf nodes are at the same depth.
T-treeIn computer science a T-tree is a type of binary tree data structure that is used by main-memory databases, such as Datablitz, eXtremeDB, MySQL Cluster, Oracle TimesTen and MobileLite. A T-tree is a balanced index tree data structure optimized for cases where both the index and the actual data are fully kept in memory, just as a B-tree is an index structure optimized for storage on block oriented secondary storage devices like hard disks.
Décomposition arborescenteEn théorie des graphes, une décomposition arborescente ou décomposition en arbre (en anglais : tree-decomposition) consiste en une décomposition d'un graphe en séparateurs (sous-ensembles de sommets dont la suppression rend le graphe non connexe), connectés dans un arbre. Cette décomposition permet de définir une autre notion importante, la largeur arborescente ou largeur d'arbre (treewidth). Cette méthode a été proposée par Paul Seymour et Neil Robertson dans le cadre de leur théorie sur les mineurs d'un graphe.