Spectroscopie photoélectronique résolue en anglevignette|Dispositif expérimental de spectroscopie photoélectronique résolue en angle|alt=|300x300px La spectroscopie photoélectronique résolue en angle (ARPES), est une technique expérimentale directe permettant l'observation de la distribution des électrons (plus précisément, la densité des excitations électroniques) dans l'espace réciproque des solides. Cette technique est une spécialisation de la spectroscopie de photoémission ordinaire. L'étude de la photoémission des électrons contenus dans un échantillon est habituellement réalisée en illuminant avec des rayons X doux.
Spectroscopie photoélectroniqueLa spectroscopie photoélectronique (photoelectron spectroscopy, PES) ou spectroscopie de photoémission (photoemission spectroscopy) est un ensemble de méthodes spectroscopiques basées sur la détection d'électrons émis par des molécules après le bombardement de celle-ci par une onde électromagnétique monochromatique. Cette spectroscopie fait partie des méthodes de spectroscopie électronique. Elle est utilisée pour mesurer l'énergie de liaison des électrons dans la matière, c'est-à-dire à sonder les états occupés.
Diffusion ComptonEn physique, la diffusion Compton (aussi appelée effet Compton) est une diffusion élastique (reposant sur la conservation de l'énergie cinétique globale du système étudié) lorsqu'on considère un électron libre, mais inélastique pour un électron lié. Ce phénomène s'observe lorsqu'un photon incident entre en collision avec un électron libre (ou plus précisément avec un électron faiblement lié) d'un atome. Au cours de ce processus, l'électron est éjecté de l'atome, qui est donc ionisé, tandis qu'un photon est diffusé.
Effet photoélectriquealt=|vignette|Un schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (particules rouges) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ondulations bleues). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau sous l'action de la lumière. Par extension, il regroupe l'ensemble des phénomènes électriques dans un matériau sous l'effet de la lumière.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
Energy gapIn solid-state physics, an energy gap or band gap is an energy range in a solid where no electron states exist, i.e. an energy range where the density of states vanishes. Especially in condensed-matter physics, an energy gap is often known more abstractly as a spectral gap, a term which need not be specific to electrons or solids. If an energy gap exists in the band structure of a material, it is called band gap.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.
Diffusion ThomsonLa diffusion Thomson est la diffusion d'un photon de faible énergie sur une particule chargée de matière au repos, généralement un électron libre, c'est-à-dire non lié à un atome. La diffusion Thomson est un des deux régimes particuliers de la diffusion Compton plus générale. Cette diffusion a été expliquée par Joseph John Thomson. Cette diffusion (voir Diffusion des particules) s'effectue pour des énergies faibles, le rayonnement électromagnétique est absorbé puis réémis par la particule.
Loi de PlanckLa loi de Planck définit la distribution de luminance énergétique spectrale du rayonnement thermique du corps noir à l'équilibre thermique en fonction de sa température thermodynamique. La loi est nommée d'après le physicien allemand Max Planck, qui l'a formulée en 1900. C'est un résultat précurseur de la physique moderne et de la théorie quantique. La luminance énergétique spectrale d'une surface est le flux énergétique émis par la surface par unité d'aire de la surface projetée, par unité d'angle solide, par unité spectrale (fréquence, longueur d'onde, période, nombre d'onde et leurs équivalents angulaires).
Electron mobilityIn solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .