Signal structure: from manifolds to molecules and structured sparsity
Publications associées (163)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdeter ...
We present a nonparametric method to estimate the discount curve from market quotes based on the Moore-Penrose pseudoinverse. The discount curve reproduces the market quotes perfectly, has maximal smoothness, and is given in closed-form. The method is easy ...
We present a non-parametric method to estimate the discount curve from market quotes based on the Moore-Penrose pseudoinverse. The discount curve reproduces the market quotes perfectly, has maximal smoothness, and is given in closed-form. The method is eas ...
Many natural images have low intrinsic dimension (a.k.a. sparse), meaning that they can be represented with very few coefficients when expressed in an adequate domain. The recent theory of Compressed Sensing exploits this property offering a powerful frame ...
Deep neural network posterior probabilities are the best features for query detection in speech archives. Dynamic time warping (DTW) is the state-of-the-art solution for this task. Posterior features live in low-dimensional subspaces whereas, the current D ...
In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time ...
The SCRBE (Static-Condensation Reduced-Basis-Element) method is a component-to-system model order reduction approach for efficient many-query and real-time treatment of linear partial differential equations characterized by many spatially distributed const ...
In this paper we address the problem of learning image structures directly from sparse codes. We first model images as linear combinations of molecules, which are themselves groups of atoms from a redundant dictionary. We then formulate a new structure lea ...
We propose a new statistical dictionary learning algorithm for sparse signals that is based on an α-stable innovation model. The parameters of the underlying model—that is, the atoms of the dictionary, the sparsity index α and the dispersion of the transfo ...
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization ...