Publication

Subspace Regularized Dynamic Time Warping for Spoken Query Detection

Hervé Bourlard, Afsaneh Asaei, Dhananjay Ram
2017
Article de conférence
Résumé

Deep neural network posterior probabilities are the best features for query detection in speech archives. Dynamic time warping (DTW) is the state-of-the-art solution for this task. Posterior features live in low-dimensional subspaces whereas, the current DTW methods do not incorporate this global structure of the data and rely on local feature distances. We exploit the query example as the dictionary for sparse recovery. Local DTW scores are integrated with the sparse reconstruction scores to obtain a subspace regularized distance matrix for DTW. The proposed method yields a substantial performance gain over the baseline system.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.