**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# A mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography

Résumé

We provide a mathematical analysis and a numerical framework for Lorentz force electrical conductivity imaging. Ultrasonic vibration of a tissue in the presence of a static magnetic field induces an electrical current by the Lorentz force. This current can be detected by electrodes placed around the tissue; it is proportional to the velocity of the ultrasonic pulse, but depends nonlinearly on the conductivity distribution. The imaging problem is to reconstruct the conductivity distribution from measurements of the induced current. To solve this nonlinear inverse problem, we first make use of a virtual potential to relate explicitly the current measurements to the conductivity distribution and the velocity of the ultrasonic pulse. Then, by applying a Wiener filter to the measured data, we reduce the problem to imaging the conductivity from an internal electric current density. We first introduce an optimal control method for solving such a problem. A new direct reconstruction scheme involving a partial differential equation is then proposed based on viscosity-type regularization to a transport equation satisfied by the current density field. We prove that solving such an equation yields the true conductivity distribution as the regularization parameter approaches zero. We also test both schemes numerically in the presence of measurement noise, quantify their stability and resolution, and compare their performance. © 2014 Elsevier Masson SAS.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (31)

Chargement

Chargement

Chargement

Concepts associés (14)

Mathématiques

thumb|upright|Raisonnement mathématique sur un tableau.
Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets

Analyse (mathématiques)

L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la

Analyse numérique

L’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des

We provide a mathematical analysis and a numerical framework for magnetoacoustic tomography with magnetic induction. The imaging problem is to reconstruct the conductivity distribution of biological tissue from measurements of the Lorentz force induced tissue vibration. We begin with reconstructing from the acoustic measurements the divergence of the Lorentz force, which is acting as the source term in the acoustic wave equation. Then we recover the electric current density from the divergence of the Lorentz force. To solve the nonlinear inverse conductivity problem, we introduce an optimal control method for reconstructing the conductivity from the electric current density. We prove its convergence and stability. We also present a point fixed approach and prove its convergence to the true solution. A new direct reconstruction scheme involving a partial differential equation is then proposed based on viscosity-type regularization to a transport equation satisfied by the electric current density field. We prove that solving such an equation yields the true conductivity distribution as the regularization parameter approaches zero. Finally, we test the three schemes numerically in the presence of measurement noise, quantify their stability and resolution, and compare their performance. © 2015 Elsevier Inc.

Mathematical and numerical aspects of viscoelastic flows are investigated here. Two simplified mathematical models are considered. They are motivated by a splitting algorithm for solving viscoelastic flows with free surfaces. The first model is a simplified Oldroyd-B model. Existence on a fixed time interval is proved in several Banach spaces provided the data are small enough. Short time existence is also proved for arbitrarily large data in Hölder spaces for the time variable. These results are based on the maximal regularity property of the Stokes operator and on the analycity behavior of the corresponding semi-group. A finite element discretization in space is then proposed. Existence of the numerical solution is proved for small data, as well as a priori error estimates, using an implicit function theorem framework. Then, the extension of these results to a stochastic simplified Hookean dumbbells model is discussed. Because of the presence of the Brownian motion, existence in a fixed time interval, provided the data are small enough, is proved only in some of the Banach spaces considered previously. The dumbbells' elongation is split in two parts, one satisfying a standart stochastic differential equation, the other satisfying a partial differential equation with a stochastic source term. A finite element discretization in space is also proposed. Existence of the numerical solution is proved for small data, as well as a priori error estimates. A numerical algorithm for solving viscoelastic flows with free surfaces is also described. This algorithm is based on a splitting method in time and two different meshes are used for the space discretization. Convergence of the numerical model is checked for the pure extensional flow and the filling of a pipe. Then, numerical results are reported for the stretching of a filament and for jet buckling.

, ,

Mathematical and numerical modelling of the cardiovascular system is a research topic that has attracted remarkable interest from the mathematical community because of its intrinsic mathematical difficulty and the increasing impact of cardiovascular diseases worldwide. In this review article we will address the two principal components of the cardiovascular system: arterial circulation and heart function. We will systematically describe all aspects of the problem, ranging from data imaging acquisition, stating the basic physical principles, analysing the associated mathematical models that comprise PDE and ODE systems, proposing sound and efficient numerical methods for their approximation, and simulating both benchmark problems and clinically inspired problems. Mathematical modelling itself imposes tremendous challenges, due to the amazing complexity of the cardiocirculatory system, the multiscale nature of the physiological processes involved, and the need to devise computational methods that are stable, reliable and efficient. Critical issues involve filtering the data, identifying the parameters of mathematical models, devising optimal treatments and accounting for uncertainties. For this reason, we will devote the last part of the paper to control and inverse problems, including parameter estimation, uncertainty quantification and the development of reduced-order models that are of paramount importance when solving problems with high complexity, which would otherwise be out of reach.