Mathematical analysis of plasmonic nanoparticles: the scalar case
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excite ...
Plasmonic dipole antennas are powerful optical devices for many applications since they combine a high field enhancement with outstanding tunability of their resonance frequency. The field enhancement, which is mainly localized inside the nanogap between b ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
In nanoscopic systems, size, geometry, and arrangement are the crucial determinants of the light-matter interaction and resulting nanoparticles excitation. At optical frequencies, one of the most prominent examples is the excitation of localized surface pl ...
In this work, we pave the route towards the engineering of strong and spectrally sharp Fano resonances in plasmonic nanostructures and derive analytical formulas for their line shape as a function of their electromagnetic response. Contrary to the original ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
The surface plasmon resonance (SPR) of silver nanoparticles (AgNPs) was studied with the discrete dipole approximation considering different shapes, sizes, dielectric environments, and supraparticles assemblies. In particular, we focused our simulations on ...
We have investigated the near-field coupling of surface plasmons to a titanium/CdS nanowire interface for two different device configurations. A bare aluminum grating on an underlying aluminum layer exhibited the expected stronger electrical signal for per ...
Investigation on the interplay of plasmonic resonances in binary nanostructures indicated that, at a fixed wavelength, with a variation in the difference permittivity ratio eta=(epsilon(2)-epsilon(0)/epsilon(1)-epsilon(0)), resonances exhibit the dielectri ...
In this work, we study how to use a plasmonic dipole antenna as a multifunctional nanodevice for surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) -based sensing and optical trapping. An analytical model is implemented ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2010
By introducing the difference permittivity ratio eta=(epsilon (2)-epsilon (0))/(epsilon (1)-epsilon (0)), the Green matrix method for computing surface plasmon resonances is extended to binary nanostructures. Based on the near field coupling, the interplay ...
Surface plasmon resonance (SPR) was observed when a planar close-packed assembly of gold nanoparticles (Au NPs) is adsorbed at the water|1,2-dichloroethane interface. Aqueous gold nanoparticles, 13 or 16 nm in diameter, are deposited at the interface by ad ...