Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot
Publications associées (61)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to simulate falling, swing, and torso b ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
This paper presents a novel method to perform automatic standing balance in a full mobilization exoskeleton. It exploits the locked ankle and the curved foot sole of the exoskeleton TWIICE. The idea is to use the knees to roll the sole and change the posit ...
Bipedal locomotion is a challenging task in the sense that it requires to maintain dynamic balance while steering the gait in potentially complex environments. Yet, humans usually manage to move without any apparent difficulty, even on rough terrains. This ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking conditions. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to model falling, swing and ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Model Predictive Control is becoming more and more present in robotic applications. It has been successfully used in control of humanoid robots to adjust positions of the footsteps in order to satisfy stability constraints. In this paper we show how to ada ...
This article presents a control algorithm framework with which a bipedal robot can perform a variety of gaits by only modifying a small set of control parameters. The controller drives a number of variables, called non-emergent variables, to their desired ...