Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Relative positioning systems play a vital role in current multi-robot systems. We present a self-contained detection and tracking approach, where a robot estimates a distance (range) and an angle (bearing) to another robot using measurements extracted from the raw data provided by two laser range finders. We propose a method based on the detection of circular features with least-squares fitting and filtering out outliers using a map-based selection. We improve the estimate of the relative robot position and reduce its uncertainty by feeding measurements into a Kalman filter, resulting in an accurate tracking system. We evaluate the performance of the algorithm in a realistic indoor environment to demonstrate its robustness and reliability.
,