Formation à distancevignette|École à distance (par radio) au Queensland vers 1960. La formation à distance est un dispositif d'enseignement appartenant à la grande catégorie de la formation ouverte ou à distance (FOAD). La FOAD inclut un éventail de pratiques hétéroclites, allant des cours par correspondance, aux MOOC en passant par les formations en ligne. Elle est présente . Le terme de FOAD est apparu pour la première fois en 1991, au sein d’un groupe de travail de la Commission européenne.
Apprentissage hybridevignette|Illustration de l'apprentissage hybride qui consiste à combiner les séquences de formation en ligne L'apprentissage hybride ou mixte (en anglais « en ») est une formule pédagogique qui résulte d’une combinaison de séquences de formation en ligne (e-learning) et de formation en présentiel. Elle offre certains avantages comme un espace de travail plus collaboratif pour les apprenants. L’utilisation des technologies de l’information et de la communication donne l’opportunité à l’apprenant d’avoir, dans une certaine mesure, un contrôle sur le temps, le lieu, les moyens et la vitesse.
Panneau de signalisation routièrethumb|Panneau (États-Unis) signalant le passage d'enfants et indiquant une limitation de vitesse thumb|Panneau de signalisation bilingue indiquant l'entrée d'une agglomération en Italie. thumb|Panneau (Débuts de la signalisation routière) : les panneaux du Touring club de France en 1904. Les panneaux de signalisation routière sont des éléments de la signalisation routière. Ils désignent à la fois le dispositif sur lequel est implanté un signal routier et le signal proprement dit.
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Batch normalizationBatch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015. While the effect of batch normalization is evident, the reasons behind its effectiveness remain under discussion. It was believed that it can mitigate the problem of internal covariate shift, where parameter initialization and changes in the distribution of the inputs of each layer affect the learning rate of the network.
Prévention et sécurité routièresthumb|Limites de vitesses dans différentes zones, affichant une limite « recommandée » de pour l'autoroute (Allemagne). thumb|Les véhicules connaissant une panne ou une autre urgence peuvent s'arrêter dans la bande d'arrêt d'urgence. La prévention routière, ou sécurité routière, est l'ensemble des mesures mises en place pour empêcher les usagers de la route d'être tués ou gravement blessés dans les accidents de la route (prévention des risques), ou en atténuer les conséquences (prévision).
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.