Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Petit réacteur modulaireUn petit réacteur modulaire (PRM) (en anglais : small modular reactor, abrégé en SMR) est un réacteur nucléaire à fission, de taille et puissance plus faibles que celles des réacteurs conventionnels, fabriqué en usine et transporté sur le site d'implantation pour y être installé. Les réacteurs modulaires permettent de réduire les travaux sur site, d'accroître l'efficacité du confinement et la sûreté des matériaux nucléaires. Les PRM (d'une puissance de ) sont proposés comme une alternative à moindre coût, ou comme complément, aux réacteurs nucléaires conventionnels.
Rodrigues' rotation formulaIn the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In other words, the Rodrigues' formula provides an algorithm to compute the exponential map from so(3), the Lie algebra of SO(3), to SO(3) without actually computing the full matrix exponential.
Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Matrice unimodulaireEn algèbre linéaire, une matrice unimodulaire sur l'anneau des entiers relatifs est une matrice carrée à coefficients entiers dont le déterminant vaut +1 ou –1. Plus généralement, une matrice unimodulaire sur un anneau commutatif A est une matrice inversible à coefficients dans A, dont l'inverse est aussi à coefficients dans A. Le groupe général linéaire GL(A) des matrices unimodulaires de taille n sur l'anneau A est donc constitué des matrices dont le déterminant est inversible dans A.
Matrice de HessenbergEn algèbre linéaire, une matrice de Hessenberg est une matrice carrée qui est « presque » triangulaire. Pour être exact, dans une matrice de Hessenberg dite « supérieure », tous les éléments se trouvant en dessous de la première sous-diagonale (i.e., la diagonale en dessous de la diagonale principale) sont nuls, et dans une matrice de Hessenberg dite « inférieure », tous les éléments situés au-dessus de la première super-diagonale (i.e., la diagonale au-dessus de la diagonale principale) sont nuls.