Énergie d'activationL'énergie d'activation est une notion introduite en 1889 par le scientifique suédois Svante August Arrhenius, après avoir constaté la loi empirique qui porte son nom et qui décrit l’évolution d’une vitesse de réaction chimique avec la température. Dans sa loi (voir ci-dessous), il apparaît un terme qui possède la dimension d’une énergie molaire et qu’il appelle énergie d’activation. Le sens intuitif qui peut être donné à cette notion est celui d'une énergie qui doit être apportée à un système chimique pour que la réaction ait lieu.
Développement rapide d'applicationsLa méthode de développement rapide d'applications, dite méthode RAD (acronyme de l'anglais rapid-application development), est la première méthode de développement de logiciels où le cycle de développement est en rupture fondamentale par rapport à celui des méthodes antérieures dites « en cascade ». Ce nouveau cycle qualifié d'itératif, d'incrémental et d'adaptatif, se retrouvera dans toutes les méthodes dites « agiles » publiées par la suite.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Fonction d'activationDans le domaine des réseaux de neurones artificiels, la fonction d'activation est une fonction mathématique appliquée à un signal en sortie d'un neurone artificiel. Le terme de "fonction d'activation" vient de l'équivalent biologique "potentiel d'activation", seuil de stimulation qui, une fois atteint entraîne une réponse du neurone. La fonction d'activation est souvent une fonction non linéaire. Un exemple de fonction d'activation est la fonction de Heaviside, qui renvoie tout le temps 1 si le signal en entrée est positif, ou 0 s'il est négatif.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Biais cognitifalt=180+ cognitive biases, designed by John Manoogian III (jm3)|vignette|302x302px|Les biais cognitifs peuvent être organisés en quatre catégories : les biais qui découlent de trop d'informations, pas assez de sens, la nécessité d'agir rapidement et les limites de la mémoire. Modèle Algorithmique: John Manoogian III (jm3) Modèle Organisationnel: Buster Benson. Un biais cognitif est une déviation dans le traitement cognitif d'une information. Le terme biais fait référence à une déviation de la pensée logique et rationnelle par rapport à la réalité.
Stable DiffusionStable Diffusion est un modèle d'apprentissage automatique permettant de générer des images numériques photoréalistes à partir de descriptions en langage naturel. Le modèle peut également être utilisé pour d'autres tâches, comme la génération d'une image améliorée à partir d'une esquisse et d'une description textuelle. Il peut fonctionner sur la plupart des matériels grand public équipés d'une carte graphique même de moyenne gamme et est salué par PC World comme « la prochaine application phare pour votre ordinateur ».
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.