Publication

Enhanced (E)over-right-arrow x (B)over-right-arrow drift effects in the TCV snowflake divertor

Résumé

Measurements of various plasma parameters at the divertor targets of snowflake (SF) and conventional single-null configurations indicate an enhanced effect of the (E) over right arrow x (B) over right arrow drift in the scrape-off layer of plasmas in the SF configuration. Plasma boundary transport simulations using the EMC3-Eirene code show that the poloidal gradients of the kinetic profiles in the vicinity of the null-point of a SF divertor are substantially larger than those of a conventional single-null configuration. These gradients are expected to drive larger (E) over right arrow x (B) over right arrow flows in the SF divertor and are thought to be responsible for the formation of the double-peaked particle and heat flux target profiles observed experimentally. Experiments in forward and reversed toroidal magnetic field directions further support this conclusion. The formation of such a double-peaked profiles is enhanced at higher plasma densities and may have beneficial effects on the divertor heat loads since they lead to broader target profiles and lower peak heat fluxes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (24)
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Reversed field pinch
A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field.
Stellarator
Le stellarator (de stellar : stellaire, et generator : générateur) est un dispositif destiné à la production de réactions contrôlées de fusion nucléaire proche du tokamak. Le confinement du plasma est entièrement réalisé par un champ magnétique hélicoïdal créé par l'arrangement complexe de bobines autour du tore, alimentées en courants forts et appelées bobines poloïdales. Le stellarator est analogue au tokamak à la différence qu'il n'utilise pas de courant toroïdal circulant à l'intérieur du plasma pour le confiner.
Afficher plus
Publications associées (33)

Re-design of EU DEMO with a low aspect ratio

Hartmut Zohm

The design point that had been chosen for EU DEMO in 2016 is reviewed here and a modification is proposed with a lower aspect ratio. Previously the same aspect ratio, A, was chosen for EU DEMO as in major tokamak experiments including ITER (A = 3.1), and, ...
2024

Global fluid simulations of plasma turbulence in stellarators

António João Caeiro Heitor Coelho

In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
EPFL2024

An experimental and computational study of tokamak plasma turbulence

Aylwin Iantchenko

Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
EPFL2023
Afficher plus
MOOCs associés (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.