Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Intégration sensorielleL’intégration sensorielle fait référence à plusieurs concepts différents. En neurophysiologie, l’intégration sensorielle se réfère au processus neurologique impliquant la réception, la modulation et l’intégration des informations sensorielles. Le système nerveux transforme les sensations en perceptions en organisant les informations sensorielles provenant du corps et de l’environnement (fournies par les différents systèmes sensoriels : tactile, auditif, visuel, gustatif/olfactif, vestibulaire, proprioceptif) afin d’utiliser efficacement le corps.
Système sensorielUn système sensoriel est une partie du système nerveux responsable de la sensation. Il regroupe les récepteurs sensoriels, les voies nerveuses, et les parties du cerveau responsables du traitement de l'information sensorielle. L'ensemble des systèmes sensoriels se divisent en sensibilité générale ou somesthésie et en sens dits spécifiques : la vision, l'odorat, le goût, l'ouïe et le toucher. Il existe sept sens : les cinq sens vu ci-dessus (vision, odorat, goût, ouïe et toucher), ainsi que le système vestibulaire et le système proprioceptif.
Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Trouble de l'intégration sensorielleLe trouble du traitement sensoriel (ou SPD, pour Sensory processing disorder, aussi anciennement dénommé "dysfonctionnement de l'intégration sensorielle") désigne un trouble correspondant à une difficulté ou à une incapacité du système nerveux central à traiter adéquatement les flux d'informations sensorielles arrivant dans le cerveau, lequel ne peut alors fournir de réponses appropriées aux exigences de l'environnement.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.