Publication

DC Performance Results Versus Assessment of ITER Main Busbar NbTi Conductors

Résumé

Four ITER main busbar (MB) conductor samples were tested in the SULTAN test facility (Centre de Recherches en Physique des Plasma, Ecole Polytechnique Fédérale de Lausanne, Switzerland) between 2011 and 2013. The MB conductors are NbTi-based cable-in-conduit conductors (CICCs), and they will become part of the feeder system of the ITER magnets. The measured dc performance of the four MB samples varied significantly, supposedly depending on the design of the bottom terminations. Two out of three samples with a U-bend box, made of a continuous conductor section, exhibit approximately 0.5 K lower current-sharing temperature Tcs than the sample with a solder-filled bottom joint, consisting of two straight conductor sections. We assess the theoretically expected Tcs performance of the MB conductor based on the characterization of individual NbTi strands, on the ITER NbTi scaling law, and on the magnetic field distribution across the cable cross section. The magnetic field in a SULTAN sample consists of three components, namely, the background SULTAN field, the self-field generated by the current in the conductor under test, and the magnetic field generated by the current in the return conductor. Taking into account all the three components, we calculate the average electric field in the cable and determine Tcs as in the experiment, namely, as the temperature at which the electric field reaches the critical value of Ec=0.1 μV/cm. The theoretically assessed Tcs confirms that the MB sample with solder-filled joint behaves as expected.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Champ magnétique
En physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Courant électrique
Un courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.
Champ électromagnétique
Un champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen. Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par : où est le champ électrique et est le champ magnétique.
Afficher plus
Publications associées (36)

Experimental study of stability, quench propagation and detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy, Ortensia Dicuonzo

High-temperature superconductors (HTSs) enable exclusive operating conditions for fusion magnets, boosting their performance up to 20 T generated magnetic fields in the temperature range from 4 K to 20 K. One of the main technological issues of HTS conduct ...
IOP Publishing Ltd2023

Impact of Hysteresis Losses in Hybrid (HTS-LTS) Coils for Fusion Applications

Davide Uglietti

Several conductor designs featuring High Temperature Superconducting (HTS) stacked tapes for fusion coils are being proposed. These conductors are planned to operate in time-varying magnetic field and current; thus, the estimation of AC losses is fundament ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Manufacture and performance test result of a 95 kA-class Nb-Ti cable-in-conduit conductor for the low field winding-package of CFETR-TF coil

Pierluigi Bruzzone, Kamil Sedlák

The engineering design of the CFETR TF prototype coil and conductors has been completed. The wind-package (WP) of the coil is graded into three regions based on the magnetic field distribution for saving cost. High-Jc Nb3Sn strand, ITER-like Nb3Sn strand a ...
ELSEVIER2023
Afficher plus
MOOCs associés (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.