Un champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen.
Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par :
où est le champ électrique et est le champ magnétique. Le champ électromagnétique est l'ensemble .
Le champ électromagnétique est en effet la composition de deux champs vectoriels que l'on peut mesurer indépendamment. Néanmoins ces deux entités sont indissociables :
la séparation en composante magnétique et électrique n'est qu'un point de vue dépendant du référentiel d'étude ;
les équations de Maxwell régissant les deux composantes électrique et magnétique sont couplées, si bien que toute variation de l'une induit une variation de l'autre.
Le comportement des champs électromagnétiques est décrit de façon classique par les équations de Maxwell et de manière plus générale par l'électrodynamique quantique.
La façon la plus générale de définir le champ électromagnétique est celle du tenseur électromagnétique de la relativité restreinte.
La valeur attribuée à chacune des composantes électrique et magnétique du champ électromagnétique dépend du référentiel d'étude. En effet, on considère généralement en régime statique que le champ électrique est créé par des charges au repos tandis que le champ magnétique est créé par des charges en mouvement (courants électriques). Néanmoins, la notion de repos et de mouvement est relative au référentiel d'étude.
Cependant, depuis la définition qu'en donnent les équations de Maxwell et depuis l'interprétation d'Einstein, contrairement aux champs électriques et magnétiques qui peuvent être statiques par rapport à un référentiel correctement choisi, la particularité caractéristique du champ électromagnétique est toujours d'être sujet à propagation, à la vitesse de la lumière, quel que soit le référentiel choisi.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le signal électrique est un vecteur essentiel pour la transmission d'information et d'énergie. En haute fréquence elle se manifeste comme un signal électromagnétique dont l'étude demande le développem
The learning outcome is to increase the knowledge of simulation methods and the role of computers in the management and the operation of electric power systems.
Le photon est le quantum d'énergie associé aux ondes électromagnétiques (allant des ondes radio aux rayons gamma en passant par la lumière visible), qui présente certaines caractéristiques de particule élémentaire. En théorie quantique des champs, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d’un point de vue quantique comme un échange de photons.
La mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
vignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
The design point that had been chosen for EU DEMO in 2016 is reviewed here and a modification is proposed with a lower aspect ratio. Previously the same aspect ratio, A, was chosen for EU DEMO as in major tokamak experiments including ITER (A = 3.1), and, ...
Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast ...
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...
Explore l'étude des ondes non linéairement couplées et de l'énergie des vagues dans les milieux dispersifs, en mettant l'accent sur les mécanismes d'éparpillement et de saturation Raman stimulés.
Couvre la méthode de quantification Gupta-Bleuler en théorie quantique des champs, en se concentrant sur la redondance dans le champ électromagnétique et la récupération des équations de Maxwell.