Publication

Template-based Monocular 3-D Shape Reconstruction And Tracking Using Laplacian Meshes

Tien Dat Ngo
2016
Thèse EPFL
Résumé

This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a very challenging problem in computer vision, being able to reconstruct and track 3-D deformable objects in videos allows us to develop many potential applications ranging from sports and entertainments to engineering and medical imaging. This thesis extends the scope of deformable object modeling to real-world applications of fully 3-D modeling of deformable objects from video streams with a number of contributions. We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3-D meshes, we can turn the monocular 3-D shape reconstruction of a deformable object given correspondences with a reference image into a much better-posed problem with far fewer degrees of freedom than the original one. This has proved key to achieving real-time performance while preserving both sufficient flexibility and robustness. Our real-time 3-D reconstruction and tracking system of deformable objects can very quickly reject outlier correspondences and accurately reconstruct the object shape in 3D. Frame-to-frame tracking is exploited to track the object under difficult settings such as large deformations, occlusions, illumination changes, and motion blur. We present an approach to solving the problem of dense image registration and 3-D shape reconstruction of deformable objects in the presence of occlusions and minimal texture. A main ingredient is the pixel-wise relevancy score that we use to weigh the influence of the image information from a pixel in the image energy cost function. A careful design of the framework is essential for obtaining state-of-the-art results in recovering 3-D deformations of both well- and poorly-textured objects in the presence of occlusions. We study the problem of reconstructing 3-D deformable objects interacting with rigid ones. Imposing real physical constraints allows us to model the interactions of objects in the real world more accurately and more realistically. In particular, we study the problem of a ball colliding with a bat observed by high speed cameras. We provide quantitative measurements of the impact that are compared with simulation-based methods to evaluate which simulation predictions most accurately describe a physical quantity of interest and to improve the models. Based on the diffuse property of the tracked deformable object, we propose a method to estimate the environment irradiance map represented by a set of low frequency spherical harmonics. The obtained irradiance map can be used to realistically illuminate 2-D and 3-D virtual contents in the context of augmented reality on deformable objects. The results compare favorably with baseline methods. In collaboration with Disney Research, we develop an augmented reality coloring book application that runs in real-time on mobile devices. The app allows the children to see the coloring work by showing animated characters with texture lifted from their colors on the drawing. Deformations of the book page are explicitly modeled by our 3-D tracking and reconstruction method. As a result, accurate color information is extracted to synthesize the character's texture.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Medical image computing
Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Détection d'objet
thumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.
Corps (entité)
In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary surface must be defined and identified by the properties of the material, although it may change over time. The boundary is usually the visible or tangible surface of the object. The matter in the object is constrained (to a greater or lesser degree) to move as one object.
Afficher plus
Publications associées (104)

Aggregating Spatial and Photometric Context for Photometric Stereo

David Honzátko

Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024

State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

Pascal Fua

3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...
WILEY2023

Unsupervised Visual Entity Abstraction towards 2D and 3D Compositional Models

Beril Besbinar

Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...
EPFL2022
Afficher plus
MOOCs associés (23)
Introduction à la Programmation Orientée Objet (en C++)
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Initiation à la Programmation en C++
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Initiation à la Programmation en C++ [retired]
Le cours suivi propose une initiation aux concepts de base de la programmation impérative tels que : variables, expressions, structures de contrôle, fonctions/méthodes, en les illustrant dans la synta
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.