Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a method for extractive summarization of audiovisual recordings focusing on topic-level segments. We first build a content similarity graph between all segments across the collection, using word vectors from the transcripts, and then select the most central segments for the summaries. We evaluate the method quantitatively on the AMI Meeting Corpus using gold standard reference summaries and the Rouge metric, and qualitatively on lecture recordings using a novel two-tiered approach with human judges. The results show that our method compares favorably with others in terms of Rouge, and outperforms the baselines for human scores, thus also validating our evaluation protocol.
Martin Jaggi, Robert West, Martin Josifoski, Ivan Paskov
Karl Aberer, Rémi Philippe Lebret, Alireza Mohammadshahi