DEEP NEURAL NETWORK BASED POSTERIORS FOR TEXT-DEPENDENT SPEAKER VERIFICATION
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
In this paper, a compressive sensing (CS) perspective to exemplar-based speech processing is proposed. Relying on an analytical relationship between CS formulation and statistical speech recognition (Hidden Markov Models HMM), the automatic speech recognit ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
Any biometric recognizer is vulnerable to spoofing attacks and hence voice biometric, also called automatic speaker verification (ASV), is no exception; replay, synthesis, and conversion attacks all provoke false acceptances unless countermeasures are used ...
The advent of statistical parametric speech synthesis has paved new ways to a unified framework for hidden Markov model (HMM) based text to speech synthesis (TTS) and automatic speech recognition (ASR). The techniques and advancements made in the field of ...
This paper investigates employment of Subspace Gaussian Mixture Models (SGMMs) for acoustic model adaptation towards different accents for English speech recognition. The SGMMs comprise globally-shared and state-specific parameters which can efficiently be ...
This paper investigates employment of Subspace Gaussian Mixture Models (SGMMs) for acoustic model adaptation towards different accents for English speech recognition. The SGMMs comprise globally-shared and state-specific parameters which can efficiently be ...
This paper evaluates the performance of the twelve primary systems submitted to the evaluation on speaker verification in the context of a mobile environment using the MOBIO database. The mobile environment provides a challenging and realistic test-bed for ...