Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plane Couette flow and pressure-driven pipe flow are two examples of flows where turbulence sets in while the laminar profile is still linearly stable. Experiments and numerical studies have shown that the transition has features compatible with the format ...
In shear flows like pipe flow and plane Couette flow there is an extended range of parameters where linearly stable laminar flow coexists with a transient turbulent dynamics. When increasing the amplitude of a perturbation on top of the laminar flow, one n ...
In parallel shear flows like pipe flow or plane Couette flow, laminar and turbulent dynamics coexist. The boundary between the two types of dynamics shows up clearly in studies that monitor the life time of a perturbation, i.e. the time it takes to relamin ...
River and open-channel flows are free surface boundary layer flows with complex 3D, large-scale, turbulent structures. The study of 2D and 3D large-scale turbulent flow structures is a great challenge for physicists, mathematicians and engineers from such ...
Transition to turbulence in pipe flow has puzzled scientists since the studies of Hagen, Poiseuille and, most prominently, Osborne Reynolds in the nineteenth century. Much of the difficulty in understanding the transition is connected with the linear stabi ...
The study of turbulent flows has always been a challenge for scientists. Turbulent flows are common in nature and have an important role in several geophysical processes related to a variety of phenomena such as river morphology, landscape modeling, atmosp ...
A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and tested in large eddy simulations sLESd of high-Reynolds number boundary layer flows over homogeneous and heterogeneous rough surfaces. The model is based on the Lagr ...
Although the equations governing turbulent flow of fluids are well known, understanding the overwhelming richness of flow phenomena, especially in high Reynolds number turbulent flows, remains one of the grand challenges in physics and engineering. High Re ...
Placed in a fluid stream, solid bodies can exhibit a separated flow that extends to their wake. The detachment of the boundary layer on both upper and lower surfaces forms two shear layers which generate above a critical value of Reynolds number a periodic ...
The present study deals with the shedding process of the Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds numbers. Investigations are performed in order to evaluate the ability of an unsteady numerical simulation to accurately reprod ...