Similarité sémantiqueLa similarité sémantique est une notion définie entre deux concepts soit au sein d'une même hiérarchie conceptuelle, soit - dans le cas d'alignement d'ontologies - entre deux concepts appartenant respectivement à deux hiérarchies conceptuelles distinctes. La similarité sémantique indique que ces deux concepts possèdent un grand nombre d'éléments en commun (propriétés, termes, instances). D’un point de vue psychologie cognitive, les notions de proximité et de similarité sont bien distinctes.
Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Plongement lexicalLe plongement lexical (« word embedding » en anglais) est une méthode d'apprentissage d'une représentation de mots utilisée notamment en traitement automatique des langues. Le terme devrait plutôt être rendu par vectorisation de mots pour correspondre plus proprement à cette méthode. Cette technique permet de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels. Cette nouvelle représentation a ceci de particulier que les mots apparaissant dans des contextes similaires possèdent des vecteurs correspondants qui sont relativement proches.
Réseau sémantiqueUn réseau sémantique est un graphe marqué destiné à la représentation des connaissances, qui représente des relations sémantiques entre concepts. Le graphe est orienté ou non orienté. Ses sommets représentent les concepts, et les liens entre les sommets (nœuds) représentent les relations sémantiques, reliant les champs lexicaux. Un réseau sémantique peut être instancié, par exemple,dans une base de données orientée graphes ou un schéma conceptuel. Les réseaux sémantiques normalisés sont exprimés sous forme de triplets RDF.
Désambiguïsation lexicaleLa désambiguïsation lexicale ou désambigüisation lexicale est la détermination du sens d'un mot dans une phrase lorsque ce mot peut avoir plusieurs sens possibles. Dans la linguistique informatique, la désambiguïsation lexicale est un problème non résolu dans le traitement des langues naturelles et de l'ontologie informatique. La résolution de ce problème permettrait des avancées importantes dans d'autres champs de la linguistique informatique comme l'analyse du discours, l'amélioration de la pertinence des résultats des moteurs de recherche, la résolution des anaphores, la cohérence, l'inférence, etc.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.