Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we present a coarse-grained model of a hydrated saturated phospholipid bilayer (dimyristoylphosphatidylcholine, DMPC) containing cholesterol that we study using a hybrid dissipative particle dynamics-Monte Carlo method. This approach allows ...
The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investig ...
We present a new generation of coarse-grained (CG) potentials that account for a simplified electrostatic description of soluble proteins. The treatment of permanent electrostatic dipoles of the backbone and polar side-chains allows to simulate proteins, p ...
The solvation of the Ru(bPy)(3) (bpy = 2,2'-bipyridyl) cation was studied by molecular dynamics simulations, using both a hybrid QM/MM Car-Parrinello scheme and a classical force field. The trajectory analysis reveals that the first solvation sphere ...
Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and from, fusing with, and bud ...
Solvated radicals play an important role in many areas of chemistry, but to date, the nature of their interactions with polar solvent molecules lacks chemical interpretation. We present a computational quantum chemical analysis of the binding motives of bi ...
Proteins have the ability to assemble in multimeric states to perform their specific biological function. Unfortunately, characterizing experimentally these structures at atomistic resolution is usually difficult. For this reason, in silico methodologies a ...
An integrated computational approach built on quantum mechanical (QM) methods, purposely tailored inter-and intra-molecular force fields and continuum solvent models combined with time-independent and timedependent schemes to account for nuclear motion eff ...
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive ...
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A signi ...