Cavity quantum electrodynamics with systems of site-controlled quantum dots and photonic crystal cavities
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...
Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges fo ...
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
Integrated quantum photonics leverages the on-chip generation of nonclassical states of light to realize key functionalities of quantum devices. Typically, the generation of such nonclassical states relies on whispering gallery mode resonators, such as int ...
Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-nois ...
The optical domain presents potential avenues for enhancing both computing and communication due to its inherentproperties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)diffractive optics for novel ...
The escalating energy demand and the imperative necessity to reduce the carbon footprint require transformative approaches to energy conversion. Materials chemistry plays a pivotal role in addressing these global challenges by developing novel materials fo ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...