Publication

Generation of entangled photon pairs from a silicon bichromatic photonic crystal cavity

Résumé

Integrated quantum photonics leverages the on-chip generation of nonclassical states of light to realize key functionalities of quantum devices. Typically, the generation of such nonclassical states relies on whispering gallery mode resonators, such as integrated optical micro-rings, which enhance the efficiency of the underlying spontaneous nonlinear processes. While these kinds of resonators excel in maximizing either the temporal confinement or the spatial overlap between different resonant modes, they are usually associated with large mode volumes, imposing an intrinsic limitation on the efficiency and footprint of the device. Here, we engineer a source of time-energy entangled photon pairs based on a silicon photonic crystal cavity, implemented in a fully CMOS-compatible platform. In this device, resonantly enhanced spontaneous four-wave mixing converts pump photon pairs into signal/idler photon pairs under the energy-conserving condition in the telecommunication C-band. The design of the resonator is based on an effective bichromatic confinement potential, allowing it to achieve up to nine close-to-equally spaced modes in frequency, while preserving small mode volumes, and the whole chip, including grating couplers and access waveguides, is fabricated in a single run on a silicon-on-insulator platform. Besides demonstrating efficient photon pair generation, we also implement a Franson-type interference experiment, demonstrating entanglement between signal and idler photons with a Bell inequality violation exceeding five standard deviations. The high generation efficiency combined with the small device footprint in a CMOS-compatible integrated structure opens a pathway toward the implementation of compact quantum light sources in all-silicon photonic platforms.(c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (38)
Intrication quantique
En mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Téléportation quantique
La téléportation quantique est une technique de transfert d'informations quantiques qui consiste à transférer l’état quantique d’un système vers un autre système similaire et distant, sans avoir besoin de transporter physiquement le système lui-même. En d'autres termes, c'est un moyen de transmettre l'information contenue dans un système quantique à un autre endroit, sans avoir à déplacer le système physique.
Convertisseur bas
En optique quantique, une conversion paramétrique descendante spontanée (Spontaneous parametric down-conversion en anglais) est un procédé d'optique non linéaire permettant d'obtenir deux photons corrélés à partir d'un seul photon "pompe". Ce processus est un des plus importants pour générer des états non classiques de la lumière, grandement utilisé en optique quantique pour générer des états de Fock, des paires de photons intriqués et est utilisé dans de nombreuses expériences permettant de vérifier les prédictions de la mécanique quantique, comme l'expérience de la gomme quantique, l'expérience de la gomme quantique à choix retardé, etc.
Afficher plus
Publications associées (43)

Quantum Protocols for ML, Physics, and Finance

Grzegorz Adam Gluch

In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
EPFL2024

Lithium tantalate photonic integrated circuits for volume manufacturing

Tobias Kippenberg, Mikhail Churaev, Xinru Ji, Zihan Li, Alisa Davydova, Junyin Zhang, Yang Chen, Xi Wang, Kai Huang

Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO3) have demonstrated the vast capabilities of materials with a high Pockels coefficient1,2. They enable linear and high-speed modulators operating at complementary metal–oxi ...
2024

Electric-field-induced second-order nonlinear processes in stoichiometric silicon nitride

Boris Zabelich

Nonlinear optical frequency conversion is one of the driving research areas in photonics. Its quasi instantaneous response and the promise of low power consumption in integrated structures could cover the demand for fast signal processing with minimal ener ...
EPFL2024
Afficher plus
MOOCs associés (1)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.