Résumé
In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found. They can include constrained problems and multimodal problems. The standard form of a continuous optimization problem is where f : Rn → R is the objective function to be minimized over the n-variable vector x, gi(x) ≤ 0 are called inequality constraints hj(x) = 0 are called equality constraints, and m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function. Combinatorial optimization Formally, a combinatorial optimization problem A is a quadruple (I, f, m, g), where I is a set of instances; given an instance x ∈ I, f(x) is the set of feasible solutions; given an instance x and a feasible solution y of x, m(x, y) denotes the measure of y, which is usually a positive real. g is the goal function, and is either min or max. The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have an answer of, say, 4. A corresponding decision problem would be "is there a path from u to v that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no'.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
CS-330: Artificial intelligence
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
MGT-418: Convex optimization
This course introduces the theory and application of modern convex optimization from an engineering perspective.
Afficher plus
Concepts associés (3)
Optimisation (mathématiques)
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Optimisation combinatoire
L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Algorithme
thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.