HydrogénaseLes hydrogénases sont des enzymes qui catalysent de façon réversible la conversion des ions H+ (« protons ») en dihydrogène selon la réaction : 2H+ + 2e– = . Les sites actifs de ces enzymes sont de nature organométallique et diffèrent entre eux notamment par la nature des métaux qui les composent. Il existe ainsi trois classes d'hydrogénases : les hydrogénases [NiFe], les hydrogénases à fer seul [FeFe] et les hydrogénases précédemment appelées sans-métal, mais qui contiennent en fait un fer.
Hydrogénation par transfertL'hydrogénation par transfert est une technique d'hydrogénation dans laquelle la source en hydrogène n'est pas le dihydrogène, mais un autre « donneur en hydrogène ». Ces donneurs sont souvent des solvants comme l'hydrazine, le dihydronaphtalène, le dihydroanthracène, l'isopropanol, l'acide méthanoïque ou le cyclohexadiène. Cette technique est utilisée dans l'industrie et en synthèse organique du fait des inconvénients et des coûts liés à l'utilisation de H2.
HydrogèneLhydrogène est l'élément chimique de numéro atomique 1, de symbole H. L'hydrogène présent sur Terre est presque entièrement constitué de l'isotope H (ou protium, comportant un proton et zéro neutron) et d'environ 0,01 % de deutérium H (un proton, un neutron). Ces deux isotopes de l'hydrogène sont stables. Un troisième isotope, le tritium H (un proton, deux neutrons), instable, est produit dans les réactions de fission nucléaire (réacteurs nucléaires ou bombes).
Carbonyle de métalthumb|180px|Pentacarbonyle de fer, constitué d'un atome de fer avec cinq ligands CO. Un carbonyle de métal ou « métal carbonyle » (de l'anglais metal carbonyl) est un complexe d'un métal de transition avec des ligands monoxyde de carbone (CO). Les ligands monoxyde de carbone peuvent être liés de façon terminale à un seul atome de métal, ou pontant entre deux atomes de métal ou plus. Ces complexes peuvent être homoleptiques, c'est-à-dire ne contenant que des ligands CO, tels que le carbonyle de nickel (Ni(CO)4), mais bien plus souvent ces complexes de carbonyle de métal sont hétéroleptiques et contiennent un mélange de ligands.
Asymmetric hydrogenationAsymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information (what chemists refer to as chirality) to transfer from one molecule to the target, forming the product as a single enantiomer.
HydrogénationL'hydrogénation est une réaction chimique qui consiste en l'addition d'une molécule de dihydrogène (H2) à un autre composé. Cette réaction est habituellement employée pour réduire ou saturer des composés organiques. Elle nécessite en général une catalyse, les réactions sans catalyse nécessitant de très hautes températures. On appelle la réaction inverse de l'hydrogénation la déshydrogénation. Les réactions où des liaisons sont brisées tandis que de l'hydrogène est additionné sont appelées hydrogénolyses (cette réaction pouvait s'appliquer aux liaisons carbone-carbone comme aux liaisons carbone-hétéroatome — O, N, X).
Ligand pontantUn ligand pontant est un ligand qui se connecte à deux atomes ou plus, généralement des ions métalliques, ce ligand pouvant être atomique ou polyatomique. Virtuellement, tous les complexes organiques sont des ligands pontants, ce terme est donc réservé à des petits ligands tels que les pseudohalogénures ou des ligands spécifiquement conçus pour se lier à deux atomes métalliques. En nomenclature des complexes, lorsqu'un seul atome se ponte à deux atomes métalliques, on précède le nom du ligand de la lettre grecque μ (mu), avec un numéro en exposant décrivant le nombre d'atomes métalliques pontés au ligand.
Stockage de l'hydrogèneLe concept de stockage de l'hydrogène désigne toutes les formes de mise en réserve du dihydrogène en vue de sa mise à disposition ultérieure comme produit chimique ou vecteur énergétique. Plusieurs possibilités existent, qui présentent avantages et inconvénients. Sous forme de gaz, le dihydrogène est peu dense et doit être fortement comprimé. La liquéfaction du dihydrogène se réalise à très basse température. L'hydrogène solide nécessite d'être lié à d'autres composants, notamment sous la forme d'hydrure.
Technologie de l'hydrogèneLes technologies de l'hydrogène sont les technologies de production, de transport et distribution, de stockage et d'utilisation du dihydrogène. Ce vecteur énergétique a une place centrale dans la perspective d'une économie hydrogène. La liste des technologies fondées sur l'utilisation du dihydrogène est donnée ci-dessous.
Hydrogène liquideL'hydrogène liquide est le dihydrogène refroidi en dessous de son point de condensation, soit () à pression atmosphérique (). Il a alors une masse volumique de . Il est généralement désigné par l'acronyme LH2 pour les applications astronautiques. C'est en effet l'un des combustibles liquides les plus utilisés au décollage, par exemple par la navette spatiale américaine, le lanceur Delta ou le lanceur Ariane 5. Le chimiste et physicien écossais James Dewar fut le premier à parvenir, en 1899, à liquéfier l'hydrogène, en combinant le refroidissement mécanique du gaz avec une détente adiabatique.