On random subgraphs of Kneser and Schrijver graphs
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
Most of the recent heuristics for the graph coloring problem start from an infeasible k-coloring (adjacent vertices may have the same color) and try to make the solution feasible through a sequence of color exchanges. In contrast, our approach (called FOO- ...
Routing packets is a central function of multi-hop wireless networks. Traditionally, there have been two paradigms for routing, either based on the geographical coordinates of the nodes (geographic routing), or based on the connectivity graph (topology-bas ...
We consider vertex k-colorings of an arbitrary simple, connected, and undirected graph G=(V,E) such that, for every vertex v, at most lambda different colors occur in the closed neighborhood of v. These colorings are called (k,lambda)-colorings. If a graph ...
The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different col ...
Graph Coloring is a very active field of research in graph theory as well as in the domain of the design of efficient heuristics to solve problems which, due to their computational complexity, cannot be solved exactly (no guarantee that an optimal solution ...
We consider the problem of partitioning the node set of a graph into p cliques and k stable sets, namely the (p,k)-coloring problem. Results have been obtained for general graphs \cite{hellcomp}, chordal graphs \cite{hellchordal} and cacti for the case whe ...
We consider the problem of finding in a graph a set R of edges to be colored in red so that there are maximum matchings having some prescribed numbers of red edges. For regular bipartite graphs with n nodes on each side, we give sufficient conditions f ...
We prove lower bounds on the complexity of maintaining fully dynamic k-edge or k-vertex connectivity in plane graphs and in (k - 1)-vertex connected graphs. We show an amortized lower bound of 0(log n/k(log log n + log b)) per edge insertion, deletion, o ...
We present a model for edge updates with restricted randomness in dynamic graph algorithms and a general technique for analyzing the expected running time of an update operation. This model is able to capture the average case in many applications, since (1 ...