Annihilation (physique)En physique, l’annihilation ou anéantissement correspond à la collision entre une particule sous-atomique et son antiparticule respective. Puisque l’énergie et la quantité de mouvement doivent être conservées, les particules ne se muent pas en rien, mais plutôt en nouvelles particules. Les antiparticules possèdent des nombres quantiques exactement opposés à ceux des particules, donc la somme des nombres quantiques du pair égale zéro.
Création de pairesUne création de paires est la création d’un couple particule-antiparticule à partir d’un photon (ou d’un autre boson de charge neutre) ou d’une particule chargée se déplaçant à une vitesse relativiste. La production fait référence à la création d’une particule élémentaire et de son antiparticule, le plus souvent à partir d’un photon (ou un autre boson neutre). Cela est permis dès lors qu’il y a suffisamment d’énergie disponible dans le centre de masse pour créer la paire — au moins l’énergie de masse au repos totale des deux particules — et que la situation permet la conservation de l’énergie et de la quantité de mouvement.
LHCbLHCb (Large Hadron Collider beauty experiment : Expérience du LHC sur le quark beauté) est une expérience de physique des particules utilisant les collisions de protons produites au collisionneur LHC du CERN (Genève). Ce détecteur est spécialisé dans la physique des saveurs et la recherche de nouvelle physique par des méthodes indirectes comme la mesure de violation de la symétrie CP ou de taux d'embranchement de décroissances rares. Le détecteur LHCb se trouve sur la commune de Ferney-Voltaire en France au point 8 du LHC, à quelques mètres de la frontière suisse.
MuonLe muon est, selon le modèle standard de la physique des particules, une particule élémentaire de charge électrique négative, instable. Le muon a pour spin 1/2 et a les mêmes propriétés physiques que l'électron, mis à part sa masse, 207 fois plus grande (, c'est pour cela qu'on l'appelle parfois « électron lourd »). Les muons sont des fermions de la famille des leptons, comme les électrons et les taus. Les muons sont notés μ−. L'antimuon, l'antiparticule associée au muon, est notée μ+ et est chargée positivement.
Avion à réactionUn avion à réaction est un avion propulsé par un moteur à réaction. Apparu peu avant la Première Guerre mondiale, expérimental dans les années 1930, opérationnel à la fin de la Seconde Guerre mondiale, ce type d'avion s'est imposé dans le domaine militaire dans les années 1950 puis, par la suite, dans le domaine civil pour les vols long ou moyen-courrier. En 1910, l'ingénieur roumain Henri Coandă présente un avion équipé d'un moteur à réaction. Le premier vol est très bref et se termine par le crash de l'appareil.
Boson de Higgsthumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Moteur à réactionUn moteur à réaction est un moteur destiné à la propulsion de véhicule (majoritairement aérien, mais pas uniquement). Le principe de base repose sur la projection d'un fluide (gaz ou liquide) dans une certaine direction ; par réaction, ce fluide transmet alors une poussée au véhicule dans la direction opposée. Le rapport poids/puissance très favorable de ce type de motorisation lui ouvre de nombreuses applications dans les secteurs aéronautiques (avions à grande vitesse) et spatiaux ainsi que marins (hydrojet).
Modèle standard de la physique des particulesvignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.
ProtonLe proton est une particule subatomique portant une charge électrique élémentaire positive. Les protons sont présents dans les noyaux atomiques, généralement liés à des neutrons par l'interaction forte (la seule exception, mais celle du nucléide le plus abondant de l'univers, est le noyau d'hydrogène ordinaire (protiumH), un simple proton). Le nombre de protons d'un noyau est représenté par son numéro atomique Z. Le proton n'est pas une particule élémentaire mais une particule composite.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.